دورية أكاديمية

Fine resolution analysis of bacterial communities associated with Neochloris oleoabundans culture and insights into terpenes as contamination control agents.

التفاصيل البيبلوغرافية
العنوان: Fine resolution analysis of bacterial communities associated with Neochloris oleoabundans culture and insights into terpenes as contamination control agents.
المؤلفون: Molina-Aulestia DT; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná Curitiba, Curitiba, 81531-980, PR, Brazil., de Carvalho JC; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná Curitiba, Curitiba, 81531-980, PR, Brazil. jccarvalho@ufpr.br., de Melo Pereira GV; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná Curitiba, Curitiba, 81531-980, PR, Brazil., da Silva Vale A; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná Curitiba, Curitiba, 81531-980, PR, Brazil., de Carvalho DP; Federal Institute of Education, Science and Technology of Paraná (IFPR), Londrina, PR, Brazil., Soccol VT; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná Curitiba, Curitiba, 81531-980, PR, Brazil., Soccol CR; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná Curitiba, Curitiba, 81531-980, PR, Brazil.
المصدر: World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2023 May 11; Vol. 39 (7), pp. 192. Date of Electronic Publication: 2023 May 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
مواضيع طبية MeSH: Terpenes*/pharmacology , Terpenes*/metabolism , Bacteria*/metabolism
مستخلص: Biological contamination is one of the main bottlenecks in microalgae production, reducing quality and productivity and sometimes leading to the complete loss of the cultures. Selecting terpenes can be a pathway toward eco-friendly contamination control in microalgae cultures. This work evaluated the presence of bacterial contaminants in N. oleoabundans cultures through HTS and 16 S analysis and their susceptibility to six natural terpenes (α-pinene, β-pinene, limonene, trans-cinnamaldehyde, linalool, and eugenol). The principal phyla identified were Proteobacteria, Bacteroidetes, and Actinobacteria, and based on these data, 89 bacterial isolates of seven genera were obtained (36 Aureimonas sp., 27 Microbacterium sp., 5 Pseudomonas sp., 9 Bacillus sp., 14 Shinella sp., 1 Brevundimonas sp., and 1 Exiguobacterium sp.) at 25ºC in the presence of light. It was possible to observe that Beta-pinene 50 mg L - 1 only inhibited Bacillus sp. In contrast, Alpha-pinene, Linalool, and Trans-cinnamaldehyde, at a concentration of 6.25 mg L - 1 efficiently inhibited most isolates. The inhibition percentages found were 79-99%.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Alim A, Goze I, Cetin A et al (2009) Antimicrobial activity of the essential oil of Cyclotrichium niveum (Boiss.) Manden. Et Scheng 3:422–425.
Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils - A review. Food and Chemical Toxicology 46:446–475.
Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279. https://doi.org/10.1080/07388550290789513. (PMID: 10.1080/0738855029078951312405558)
Benson. (2001). Microbiological applications lab manual (Eigtht Edi). The McGraw-Hill Companies.
Biondi N, Cheloni G, Tatti E et al (2017) The bacterial community associated with Tetraselmis suecica outdoor mass cultures. J Appl Phycol 29:67–78. https://doi.org/10.1007/s10811-016-0966-5. (PMID: 10.1007/s10811-016-0966-5)
Cavalli-sforza ALL, Edwards AWF (2008) Phylogenetic analysis: models and estimation procedures published by : Society for the study of evolution stable URL. Society 21:550–570. http://www.jstor.org/stable/2406616.
Choi GG, Bae MS, Ahn CY, Oh HM (2008) Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol Lett 30:87–92. https://doi.org/10.1007/s10529-007-9523-2. (PMID: 10.1007/s10529-007-9523-217846705)
CLSI (2012) Methods for Dilution Antimicrobial susceptibility tests for Bacteria that grow aerobically; approved standard — Ninth Edition. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA.
Colling Klein B, Bonomi A, Maciel Filho R (2018) Integration of microalgae production with industrial biofuel facilities: a critical review. Renew Sustain Energy Rev 82:1376–1392. https://doi.org/10.1016/j.rser.2017.04.063. (PMID: 10.1016/j.rser.2017.04.063)
Day JG, Gong Y, Hu Q (2017) Microzooplanktonic grazers – A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res 27:356–365. https://doi.org/10.1016/j.algal.2017.08.024. (PMID: 10.1016/j.algal.2017.08.024)
de Carvalho Neto DP, de Melo Pereira GV, de Carvalho JC et al (2018) High-throughput rRNA gene sequencing reveals high and complex bacterial diversity associated with brazilian coffee bean fermentation. Food Technol Biotechnol 56:90–95. https://doi.org/10.17113/ftb.56.01.18.5441. (PMID: 10.17113/ftb.56.01.18.5441)
de Jaeger L, Carreres BM, Springer J et al (2018) Neochloris oleoabundans is worth its salt: transcriptomic analysis under salt and nitrogen stress. PLoS ONE 13:1–21. https://doi.org/10.1371/journal.pone.0194834. (PMID: 10.1371/journal.pone.0194834)
Deore P, Beardall J, Noronha S (2020) Non-photochemical quenching, a non-invasive probe for monitoring microalgal grazing: influence of grazing-mediated total ammonia-nitrogen. Appl Phycol 1:32–43. https://doi.org/10.1080/26388081.2020.1715255. (PMID: 10.1080/26388081.2020.1715255)
Di Caprio F (2020) Methods to quantify biological contaminants in microalgae cultures. Algal Res 49:101943. https://doi.org/10.1016/j.algal.2020.101943. (PMID: 10.1016/j.algal.2020.101943)
Dias KJSDO, Miranda GM, Bessa JR et al (2022) Terpenes as bacterial efflux pump inhibitors: a systematic review.Front Pharmacol13.
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461. (PMID: 10.1093/bioinformatics/btq46120709691)
Felsenstein J (1985) Confidence Limits on Phylogenies: An Approach Using the Bootstrap Author (s): Joseph Felsenstein Published by: Society for the Study of Evolution Stable URL : http://www.jstor.org/stable/2408678 Accessed : 26-05-2016 15 : 14 UTC Your use of the JSTOR. Evolution (N Y) 39:783–791.
Fernández Olmos A, de la García C, Saéz Nieto JA, Valdezate Ramos S (2010)Metodos de Identificacion Bacteriana en el Laboratorio de Microbiología.
Fisher CL, Ward CS, Lane PD et al (2019) Bacterial communities protect the alga Microchloropsis salina from grazing by the rotifer Brachionus plicatilis. Algal Res 40. https://doi.org/10.1016/j.algal.2019.101500.
Fulbright SP, Chisholm S, Reardon KF (2016) Growth inhibition of Nannochloropsis species by Bacillus pumilus. Algal Res 20:70–76. https://doi.org/10.1016/j.algal.2016.09.016. (PMID: 10.1016/j.algal.2016.09.016)
Fulbright SP, Robbins-Pianka A, Berg-Lyons D et al (2018) Bacterial community changes in an industrial algae production system. Algal Res 31:147–156. https://doi.org/10.1016/j.algal.2017.09.010. (PMID: 10.1016/j.algal.2017.09.010297853585959032)
Goecke F, Thiel V, Wiese J, Labes A, Imhoff JF (2013) Algae as an important environment for bacteria – phylogenetic relationships among new bacterial species isolated from algae. Phycologia 52(4):368–374. https://doi.org/10.2216/12.
Gouveia L, Marques AE, Da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826. https://doi.org/10.1007/s10295-009-0559-2. (PMID: 10.1007/s10295-009-0559-219377896)
Guerrini F, Mazzotti A, Boni L, Pistocchi R (1998) Bacterial-algal interaction in polysaccharide production. Aquat Microb Ecol 15:247–253. https://doi.org/10.3354/ame015247. (PMID: 10.3354/ame015247)
Hall T (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.
Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298. https://doi.org/10.1093/bib/bbn013. (PMID: 10.1093/bib/bbn01318372315)
Kimbrel JA, Samo TJ, Ward C et al (2019) Host selection and stochastic effects influence bacterial community assembly on the microalgal phycosphere. Algal Res 40. https://doi.org/10.1016/j.algal.2019.101489.
Krohn-Molt I, Wemheuer B, Alawi M et al (2013) Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl Environ Microbiol 79:6196–6206. https://doi.org/10.1128/AEM.01641-13. (PMID: 10.1128/AEM.01641-13239134253811195)
Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096. (PMID: 10.1093/molbev/msy096297228875967553)
Lam TP, Lee TM, Chen CY, Chang JS (2018) Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol 252:180–187. https://doi.org/10.1016/j.biortech.2017.12.088. (PMID: 10.1016/j.biortech.2017.12.08829306613)
Lane DJ, Pace B, Olsen GJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses (reverse transcriptase/dideoxynudeotide). Evol (N Y) 82:6955–6959.
le Chevanton M, Garnier M, Bougaran G et al (2013) Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Res 2:212–222. https://doi.org/10.1016/j.algal.2013.05.003. (PMID: 10.1016/j.algal.2013.05.003)
Lee MR, Huang YT, Liao CH et al (2011) Bacteremia caused by Brevundimonas species at a tertiary care hospital in Taiwan, 2000–2010. Eur J Clin Microbiol Infect Dis 30:1185–1191. https://doi.org/10.1007/s10096-011-1210-5. (PMID: 10.1007/s10096-011-1210-521461849)
Liu B, Eltanahy EE, Liu H et al (2020a) Growth-promoting bacteria double eicosapentaenoic acid yield in microalgae. Bioresour Technol 316:123916. https://doi.org/10.1016/j.biortech.2020.123916. (PMID: 10.1016/j.biortech.2020.12391632768998)
Liu X, Cai J, Chen H et al (2020b) Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb Pathog 141. https://doi.org/10.1016/j.micpath.2020.103980.
Marchese A, Barbieri R, Coppo E et al (2017) Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol 43:668–689. https://doi.org/10.1080/1040841X.2017.1295225. (PMID: 10.1080/1040841X.2017.129522528346030)
Maske BL, EFFICIENCY OF SPONTANEOUS LACTIC ACID FERMENTATION TO IMPROVE THE QUALITY OF RAW MILK CONTAINING HIGH LEVELS OF Pseudomonas CONTAMINATION (2021) :AN ALERT FOR SANITARY MEASURES.
Mendes LPM, Maciel KM, Vieira ABR et al (2011) Atividade antimicrobiana de extratos etanólicos de Peperomia pellucida e Portulaca pilosa. Revista de Ciencias Farmaceuticas Basica e Aplicada 32:121–125.
Mohamed AA, Ali SI, EL-Baz FK et al (2014) Chemical composition of essential oil and in vitro antioxidant and antimicrobial activities of crude extracts of Commiphora myrrha resin. Ind Crops Prod 57:10–16. https://doi.org/10.1016/j.indcrop.2014.03.017. (PMID: 10.1016/j.indcrop.2014.03.017)
Molina D, de Carvalho JC, Júnior AIM et al (2019) Biological contamination and its chemical control in microalgal mass cultures. Appl Microbiol Biotechnol 103:9345–9358. https://doi.org/10.1007/s00253-019-10193-7. (PMID: 10.1007/s00253-019-10193-731720774)
Molina-Aulestia DT, Soccol CR, Júnior AIM et al (2021) Resistance of Neochloris oleoabundans to six terpenes applicable as green contamination control agents. J Appl Phycol. https://doi.org/10.1007/s10811-021-02612-y. (PMID: 10.1007/s10811-021-02612-y)
Moreira MR, Ponce AG, Del Valle CE, Roura SI (2005) Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT - Food Science and Technology 38:565–570. https://doi.org/10.1016/j.lwt.2004.07.012. (PMID: 10.1016/j.lwt.2004.07.012)
Moreno-Garrido I, Cañavate JP (2000) Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquac Eng 24:107–114. https://doi.org/10.1016/S0144-8609(00)00067-4. (PMID: 10.1016/S0144-8609(00)00067-4)
Mu R, Fan Z, Pei H et al (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci 19:1336–1340. https://doi.org/10.1016/S1001-0742(07)60218-6. (PMID: 10.1016/S1001-0742(07)60218-6)
Muhammad Asif Hanif, Shafaq Nisar, GSK, Zahid Mushtaq, Muhammad Zubair (2019) Essential oils. In Essential oil research. Springer International Publishing. https://doi.org/10.1007/978-3-030-16546-8.
NCCLS (1999) Methods for determining bactericidal activity of Antimicrobial Agents. Approved Guideline.
Parvekar P, Palaskar J, Metgud S et al (2020) The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent 7:105–109. https://doi.org/10.1080/26415275.2020.1796674. (PMID: 10.1080/26415275.2020.1796674329394547470068)
Peng L, Lan CQ, Zhang Z et al (2015) Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: Effects of pH and dissolved inorganic carbon. Bioresour Technol 197:143–151. https://doi.org/10.1016/j.biortech.2015.07.101. (PMID: 10.1016/j.biortech.2015.07.10126320019)
Pfaller MA, Haturvedi V, Espinel-Ingroff A et al (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard — Second Edition Serving the World ’ s Medical Science Community Through Voluntary Consensus.
Piampiano E, Pini F, Biondi N, Pastorelli R, Giovannetti L, Viti C (2019) Analysis of microbiota in cultures of the green microalga Tetraselmis suecica. Eur J Phycol 54(3):497–508. https://doi.org/10.1080/09670262.2019.1606940.
Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219. (PMID: 10.1093/nar/gks1219)
Ramanan R, Kim BH, Cho DH et al (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003. (PMID: 10.1016/j.biotechadv.2015.12.00326657897)
Riquelme C (2003) Microalgae and bacteria interaction in the aquatic environment and their potential use in aquaculture.
Sambles C, Moore K, Lux TM et al (2017) Metagenomic analysis of the complex microbial consortium associated with cultures of the oil-rich alga Botryococcus braunii. Microbiologyopen 6:1–9. https://doi.org/10.1002/mbo3.482. (PMID: 10.1002/mbo3.482)
Santos AM, Janssen M, Lamers PP et al (2012) Bioresource Technology Growth of oil accumulating microalga Neochloris oleoabundans under alkaline – saline conditions. Bioresour Technol 104:593–599. https://doi.org/10.1016/j.biortech.2011.10.084. (PMID: 10.1016/j.biortech.2011.10.08422115529)
Scholz B (2014) Purification and culture characteristics of 36 benthic marine diatoms isolated from the Solthörn tidal flat (Southern North Sea). J Phycol 50:685–697. https://doi.org/10.1111/jpy.12193. (PMID: 10.1111/jpy.1219326988452)
Seymour JR, Amin SA, Raina JB, Stocker R (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol 2. https://doi.org/10.1038/nmicrobiol.2017.65.
Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024. (PMID: 10.1016/j.rser.2015.05.024)
Smriga S, Fernandez VI, Mitchell JG, Stocker R (2016) Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc Natl Acad Sci U S A 113:1576–1581. https://doi.org/10.1073/pnas.1512307113. (PMID: 10.1073/pnas.1512307113268021224760798)
Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) BG11 (Blue Green Medium). Cult Collect Algae Protozoa 11:559001.
Van Haute S, Uyttendaele M, Sampers I (2015) Coagulation of turbidity and organic matter from leafy-vegetable wash-water using chitosan to improve water disinfectant stability. LWT - Food Science and Technology 64:337–343. https://doi.org/10.1016/j.lwt.2015.05.063. (PMID: 10.1016/j.lwt.2015.05.063)
Vaz MGMV, Bastos RW, Milanez GP et al (2014) Use of sodium hypochlorite solutions to obtain axenic cultures of Nostoc strains (Cyanobacteria). Revista Brasileira de Botanica 37:115–120. https://doi.org/10.1007/s40415-014-0055-4. (PMID: 10.1007/s40415-014-0055-4)
Veiga A, Toledo M da, Rossa GT et al (2019) LS, Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J Microbiol Methods 162:50–61. https://doi.org/10.1016/j.mimet.2019.05.003.
Vu CHT, Lee HG, Chang YK, Oh HM (2018) Axenic cultures for microalgal biotechnology: establishment, assessment, maintenance, and applications. Biotechnol Adv 36:380–396. https://doi.org/10.1016/j.biotechadv.2017.12.018. (PMID: 10.1016/j.biotechadv.2017.12.01829292155)
Wang H, Zhang W, Chen L et al (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 128:745–750. https://doi.org/10.1016/j.biortech.2012.10.158. (PMID: 10.1016/j.biortech.2012.10.15823186675)
Wang C, Liwei M, Park J et al (2018) Microbial platform for terpenoid production: Escherichia coli and yeast. Front Microbiol 9:1–8. https://doi.org/10.3389/fmicb.2018.02460. (PMID: 10.3389/fmicb.2018.02460)
معلومات مُعتمدة: PROEX program Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; PROEX program Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 407543/2013-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 407543/2013-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 407543/2013-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Bacteria; MIC; Microalgae; Terpene; Trans-cinnamaldehyde
المشرفين على المادة: 0 (Terpenes)
4MS8VHZ1HJ (beta-pinene)
JPF3YI7O34 (alpha-pinene)
D81QY6I88E (linalool)
SR60A3XG0F (cinnamaldehyde)
تواريخ الأحداث: Date Created: 20230511 Date Completed: 20230515 Latest Revision: 20230515
رمز التحديث: 20231215
DOI: 10.1007/s11274-023-03641-0
PMID: 37166608
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-0972
DOI:10.1007/s11274-023-03641-0