دورية أكاديمية

Abnormalities of the corpus callosum. Can prenatal imaging predict the genetic status? Correlations between imaging phenotype and genotype.

التفاصيل البيبلوغرافية
العنوان: Abnormalities of the corpus callosum. Can prenatal imaging predict the genetic status? Correlations between imaging phenotype and genotype.
المؤلفون: Nguyen T; Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France., Heide S; Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France., Guilbaud L; Service de médecine fœtale, Hôpital Armand-Trousseau, Sorbonne Université, APHP, DMU ORIGYNE, Paris, France., Valence S; Service de neuropédiatrie, Hôpital Armand-Trousseau, Paris, France., Perre SV; Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France., Blondiaux E; Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France., Keren B; Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France., Quenum-Miraillet G; Service de génétique médicale, Hôpital Armand-Trousseau, Paris, France., Jouannic JM; Service de médecine fœtale, Hôpital Armand-Trousseau, Sorbonne Université, APHP, DMU ORIGYNE, Paris, France., Mandelbrot L; Service de gynécologie obstétrique, Hôpital Louis-Mourier, Colombes, France., Picone O; Service de gynécologie obstétrique, Hôpital Louis-Mourier, Colombes, France., Guet A; Service de neuropédiatrie, Hôpital Louis-Mourier, Colombes, France., Tsatsaris V; Service de gynécologie obstétrique, Hôpital Cochin-Port Royal, Paris, France., Milh M; Service de neuropédiatrie, CHU de Marseille, AP-HM, Marseille, France., Girard N; Service de neuroradiologie, CHU de Marseille, AP-HM, Marseille, France., Vincent M; Service de génétique, CHU de Nantes, Nantes, France., Nizon M; Service de génétique, CHU de Nantes, Nantes, France., Poirsier C; Service de génétique, CHU de Reims, Reims, France., Vivanti A; Service de gynécologie obstétrique, CHU Antoine Béclère, Clamart, France., Benachi A; Service de gynécologie obstétrique, CHU Antoine Béclère, Clamart, France., Portes VD; Service de neuropédiatrie, Hôpital Femme Mère Enfant, Lyon, France., Guibaud L; Service d'imagerie pédiatrique et fœtale, Hôpital Femme Mère Enfant, Lyon, France., Patat O; Service de génétique médicale, Hôpital Purpan, Toulouse, France., Spentchian M; Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France., Frugère L; Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France., Héron D; Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France., Garel C; Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France.
المصدر: Prenatal diagnosis [Prenat Diagn] 2023 Jun; Vol. 43 (6), pp. 746-755. Date of Electronic Publication: 2023 May 23.
نوع المنشور: Multicenter Study; Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8106540 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0223 (Electronic) Linking ISSN: 01973851 NLM ISO Abbreviation: Prenat Diagn Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, [Sussex]; New York : Wiley, c1981-
مواضيع طبية MeSH: Corpus Callosum*/diagnostic imaging , Ultrasonography, Prenatal*/methods, Pregnancy ; Female ; Humans ; Retrospective Studies ; Agenesis of Corpus Callosum/diagnostic imaging ; Agenesis of Corpus Callosum/genetics ; Magnetic Resonance Imaging/methods ; Genotype ; Phenotype ; Chloride Channels ; Prenatal Diagnosis
مستخلص: Objective: Recent studies have evaluated prenatal exome sequencing (pES) for abnormalities of the corpus callosum (CC). The objective of this study was to compare imaging phenotype and genotype findings.
Method: This multicenter retrospective study included fetuses with abnormalities of the CC between 2018 and 2020 by ultrasound and/or MRI and for which pES was performed. Abnormalities of the CC were classified as complete (cACC) or partial (pACC) agenesis of the CC, short CC (sCC), callosal dysgenesis (CD), interhemispheric cyst (IHC), or pericallosal lipoma (PL), isolated or not. Only pathogenic (class 5) or likely pathogenic (class 4) (P/LP) variants were considered.
Results: 113 fetuses were included. pES identified P/LP variants for 3/29 isolated cACC, 3/19 isolated pACC, 0/10 isolated sCC, 5/10 isolated CD, 5/13 non-isolated cACC, 3/6 non-isolated pACC, 8/11 non-isolated CD and 0/12 isolated IHC and PL. Associated cerebellar abnormalities were significantly associated with P/LP variants (OR = 7.312, p = 0.027). No correlation was found between phenotype and genotype, except for fetuses with a tubulinopathy and an MTOR pathogenic variant.
Conclusions: P/LP variants were more frequent in CD and in non-isolated abnormalities of the CC. No such variants were detected for fetuses with isolated sCC, IHC and PL.
(© 2023 John Wiley & Sons Ltd.)
References: Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain J Neurol. 2014;137(Pt 6):1579-1613. https://doi.org/10.1093/brain/awt358.
Glass HC, Shaw GM, Ma C, Sherr EH. Agenesis of the corpus callosum in California 1983-2003: a population-based study. Am J Med Genet. 2008;146A(19):2495-2500. https://doi.org/10.1002/ajmg.a.32418.
Agenesis of the Corpus Callosum: A Clinical Approach to Diagnosis - Palmer - 2014 - American Journal of Medical Genetics Part C: Seminars in Medical Genetics - Wiley Online Library [Internet]. 2023. Disponible sur: https://onlinelibrary.wiley.com/doi/full/10.1002/ajmg.c.31405?casa_token=QTLKbery_icAAAAA%3At11N0lb7hzcVFhYBMnOmj6qdb0Dp5-cMU4bvtANMmV6IUptxEGyo_6CsDn-77MlkMDHO66wPD3xEnqA.
Yeh HR, Park HK, Kim HJ, et al. Neurodevelopmental outcomes in children with prenatally diagnosed corpus callosal abnormalities. Brain Dev. 2018;40(8):634-641. https://doi.org/10.1016/j.braindev.2018.04.012.
Raile V, Herz NA, Promnitz G, Schneider J, Tietze A, Kaindl AM. Clinical outcome of children with corpus callosum agenesis. Pediatr Neurol. 2020;112:47-52. https://doi.org/10.1016/j.pediatrneurol.2020.07.013.
Shwe WH, Schlatterer SD, Williams J, du Plessis AJ, Mulkey SB. Outcome of agenesis of the corpus callosum diagnosed by fetal MRI. Pediatr Neurol. 2022;135:44-51. https://doi.org/10.1016/j.pediatrneurol.2022.07.007.
Moutard ML, Kieffer V, Feingold J, et al. Isolated corpus callosum agenesis: a ten-year follow-up after prenatal diagnosis (how are the children without corpus callosum at 10 years of age?). Prenat Diagn. 2012;32(3):277-283. https://doi.org/10.1002/pd.3824.
Sotiriadis A, Makrydimas G. Neurodevelopment after prenatal diagnosis of isolated agenesis of the corpus callosum: an integrative review. Am J Obstet Gynecol. 2012;206(4):337.e1-5. https://doi.org/10.1016/j.ajog.2011.12.024.
Folliot-Le Doussal L, Chadie A, Brasseur-Daudruy M, Verspyck E, Saugier-Veber P, Marret S. Neurodevelopmental outcome in prenatally diagnosed isolated agenesis of the corpus callosum. Early Hum Dev. 2018;116:9-16. https://doi.org/10.1016/j.earlhumdev.2017.10.004.
Bernardes da Cunha S, Carneiro MC, Miguel Sa M, Rodrigues A, Pina C. Neurodevelopmental outcomes following prenatal diagnosis of isolated corpus callosum agenesis: a systematic review. Fetal Diagn Ther. 2021;48(2):88-95. https://doi.org/10.1159/000512534.
Lanna M, Scelsa B, Cutillo G, et al. Long-term outcome of consecutive case series of congenital isolated agenesis of corpus callosum. Ultrasound Obstet Gynecol. 2022;60(4):494-498. https://doi.org/10.1002/uog.24898.
Al-Hashim AH, Blaser S, Raybaud C, MacGregor D. Corpus callosum abnormalities: neuroradiological and clinical correlations. Dev Med Child Neurol. 2016;58(5):475-484. https://doi.org/10.1111/dmcn.12978.
des Portes V, Rolland A, Velazquez-Dominguez J, et al. Outcome of isolated agenesis of the corpus callosum: a population-based prospective study. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2018;22(1):82-92. https://doi.org/10.1016/j.ejpn.2017.08.003.
Lord J, McMullan DJ, Eberhardt RY, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet Lond Engl. 2019;393(10173):747-757. https://doi.org/10.1016/s0140-6736(18)31940-8.
Chandler N, Best S, Hayward J, et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet Med Off J Am Coll Med Genet. 2018;20(11):1430-1437. https://doi.org/10.1038/gim.2018.30.
Pangalos C, Hagnefelt B, Lilakos K, Konialis C. First applications of a targeted exome sequencing approach in fetuses with ultrasound abnormalities reveals an important fraction of cases with associated gene defects. PeerJ. 2016;4:e1955. https://doi.org/10.7717/peerj.1955.
de Koning MA, Haak MC, Adama van Scheltema PN, et al. From diagnostic yield to clinical impact: a pilot study on the implementation of prenatal exome sequencing in routine care. Genet Med Off J Am Coll Med Genet. 2019;21(10):2303-2310. https://doi.org/10.1038/s41436-019-0499-9.
Heide S, Spentchian M, Valence S, et al. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation. Genet Med Off J Am Coll Med Genet. 2020;22(11):1887-1891. https://doi.org/10.1038/s41436-020-0872-8.
Ghi T, Carletti A, Contro E, et al. Prenatal diagnosis and outcome of partial agenesis and hypoplasia of the corpus callosum. Ultrasound Obstet Gynecol. 2010;35(1):35-41. https://doi.org/10.1002/uog.7489.
Lerman-Sagie T, Ben-Sira L, Achiron R, et al. Thick fetal corpus callosum: an ominous sign? Ultrasound Obstet Gynecol. 2009;34(1):55-61. https://doi.org/10.1002/uog.6356.
Bartholmot C, Cabet S, Massoud M, et al. Prenatal imaging features and postnatal outcome of short corpus callosum: a series of 42 cases. Fetal Diagn Ther. 2021;48(3):217-226. https://doi.org/10.1159/000512953.
Rapport de la CNEOF 2016.
Salomon LJ, Duyme M, Crequat J, et al. French fetal biometry: reference equations and comparison with other charts. Ultrasound Obstet Gynecol. 2006;28(2):193-198. https://doi.org/10.1002/uog.2733.
Chavez MR, Ananth CV, Smulian JC, Lashley S, Kontopoulos EV, Vintzileos AM. Fetal transcerebellar diameter nomogram in singleton gestations with special emphasis in the third trimester: a comparison with previously published nomograms. Am J Obstet Gynecol. 2003;189(4):1021-1025. https://doi.org/10.1067/s0002-9378(03)00894-9.
Tilea B, Alberti C, Adamsbaum C, et al. Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet Gynecol. 2009;33(2):173-181. https://doi.org/10.1002/uog.6276.
Salomon LJ, Alfirevic Z, Da Silva Costa F, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2019;53(6):715-723. https://doi.org/10.1002/uog.20272.
Cignini P, Padula F, Giorlandino M, et al. Reference charts for fetal corpus callosum length: a prospective cross-sectional study of 2950 fetuses. J Ultrasound Med Off J Am Inst Ultrasound Med. 2014;33(6):1065-1078. https://doi.org/10.7863/ultra.33.6.1065.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and Genomics and the association for molecular pathology. Genet Med Off J Am Coll Med Genet. 2015;17(5):405-424. https://doi.org/10.1038/gim.2015.30.
de Wit Mc, Boekhorst F, Mancini Gm, et al. Advanced genomic testing may aid in counseling of isolated agenesis of the corpus callosum on prenatal ultrasound. Prenat Diagn. 2017;37(12):1191-1197. https://doi.org/10.1002/pd.5158.
Diderich KEM, Romijn K, Joosten M, et al. The potential diagnostic yield of whole exome sequencing in pregnancies complicated by fetal ultrasound anomalies. Acta Obstet Gynecol Scand. 2021;100(6):1106-1115. https://doi.org/10.1111/aogs.14053.
Leombroni M, Khalil A, Liberati M, D'Antonio F. Fetal midline anomalies: diagnosis and counselling Part 1: corpus callosum anomalies. Eur J Paediatr Neurol. 2018;22(6):951-962. https://doi.org/10.1016/j.ejpn.2018.08.007.
Tepper R, Leibovitz Z, Garel C, Sukenik-Halevy R. A new method for evaluating short fetal corpus callosum. Prenat Diagn. 2019;39(13):1283-1290. https://doi.org/10.1002/pd.5598.
Achiron R, Achiron A. Development of the human fetal corpus callosum: a high-resolution, cross-sectional sonographic study. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2001;18(4):343-347. https://doi.org/10.1046/j.0960-7692.2001.00512.x.
Tsur A, Weisz B, Rosenblat O, et al. Personalized charts for the fetal corpus callosum length. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2019;32(23):3931-3938. https://doi.org/10.1080/14767058.2018.1479389.
Meidan R, Bar-Yosef O, Ashkenazi I, et al. Neurodevelopmental outcome following prenatal diagnosis of a short corpus callosum. Prenat Diagn. 2019;39(6):477-483. https://doi.org/10.1002/pd.5460.
Manevich-Mazor M, Weissmann-Brenner A, Bar-Yosef O, et al. OP07.08: added value of fetal MRI in the evaluation of fetal anomalies of the corpus callosum: a retrospective analysis of 78 cases. Ultrasound Obstet Gynecol. 2016;48(S1):73.
Millischer AE, Grevent D, Sonigo P, et al. Feasibility and added value of fetal DTI tractography in the evaluation of an isolated short corpus callosum: preliminary results. AJNR Am J Neuroradiol. 2022;43(1):132-138. https://doi.org/10.3174/ajnr.a7383.
Tutschek B, Sinkovskaya E. Short corpus callosum in fetal Down syndrome. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2020;56(3):464-465. https://doi.org/10.1002/uog.21908.
Yaniv G, Katorza E, Tsehmaister Abitbol V, et al. Discrepancy in fetal head biometry between ultrasound and MRI in suspected microcephalic fetuses. Acta Radiol. 2017;58(12):1519-1527. https://doi.org/10.1177/0284185117698865.
Tercanli S, Prüfer F. Fetal neurosonogaphy: ultrasound and magnetic resonance imaging in competition. Ultraschall Med Stuttg Ger. 2016;37(6):555-557. https://doi.org/10.1055/s-0042-117142.
Gafner M, Fried S, Gosher N, et al. Fetal brain biometry: is there an agreement among ultrasound, MRI and the measurements at Birth? Eur J Radiol. 2020;133:109369. https://doi.org/10.1016/j.ejrad.2020.109369.
Behrendt N, Zaretsky MV, West NA, Galan HL, Crombleholme TM, Meyers ML. Ultrasound versus MRI: is there a difference in measurements of the fetal lateral ventricles? J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2017;30(3):298-301. https://doi.org/10.3109/14767058.2016.1171310.
Gelot A, Lewin F, Moraine C, et al. [Agenesis of the corpus callosum. Neuropathologic study and physiopathologic hypotheses]. Neurochirurgie. 1998;44(1 Suppl):74-84.
Atallah A, Lacalm A, Massoud M, Massardier J, Gaucherand P, Guibaud L. Prenatal diagnosis of pericallosal curvilinear lipoma: specific imaging pattern and diagnostic pitfalls. Ultrasound Obstet Gynecol. 2018;51(2):269-273. https://doi.org/10.1002/uog.17400.
Chougar L, Blondiaux E, Moutard ML, et al. Variability of T1-weighted signal intensity of pericallosal lipomas in the fetus. Pediatr Radiol. 2018;48(3):383-391. https://doi.org/10.1007/s00247-017-4028-1.
Rasmussen SA, Olney RS, Holmes LB, Keppler-Noreuil KM, Moore CA. Guidelines for case classification for the national Birth defects prevention study. Birt Defects Res A Clin Mol Teratol. 2003;67(3):193-201. https://doi.org/10.1002/bdra.10012.
Mignot C, Moutard ML, Rastetter A, et al. ARID1B mutations are the major genetic cause of corpus callosum anomalies in patients with intellectual disability. Brain J Neurol. 2016;139(11):e64. https://doi.org/10.1093/brain/aww181.
Senapati G, Levine D. Prenatal-postnatal correlations of brain abnormalities: how lesions and diagnoses change over time. J Pediatr Neuroradiol. 2012;1(3):171-184. https://doi.org/10.3233/pnr-2012-027.
Kaasen A, Tuveng J, Heiberg A, Scott H, Haugen G. Correlation between prenatal ultrasound and autopsy findings: a study of second-trimester abortions. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2006;28(7):925-933. https://doi.org/10.1002/uog.3871.
Ozdemir O, Aksoy F, Sen C. Comparison of prenatal central nervous system abnormalities with postmortem findings in fetuses following termination of pregnancy and clinical utility of postmortem examination. J Perinat Med. 2022;50(6):769-776. https://doi.org/10.1515/jpm-2021-0501.
Dhouib A, Blondiaux E, Moutard ML, et al. Correlation between pre- and postnatal cerebral magnetic resonance imaging. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2011;38(2):170-178. https://doi.org/10.1002/uog.8937.
المشرفين على المادة: 0 (Chloride Channels)
تواريخ الأحداث: Date Created: 20230513 Date Completed: 20230612 Latest Revision: 20231117
رمز التحديث: 20231117
DOI: 10.1002/pd.6382
PMID: 37173814
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0223
DOI:10.1002/pd.6382