دورية أكاديمية

Immunomodulatory Activity of Probiotics in Models of Bacterial Infections.

التفاصيل البيبلوغرافية
العنوان: Immunomodulatory Activity of Probiotics in Models of Bacterial Infections.
المؤلفون: Dias TG; Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil., Rodrigues LDS; Graduate Program in Biodiversity and Biotechnology, Federal University of Maranhão, São Luís, Maranhão, Brazil., Farias JR; Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil., Pereira ALF; Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil., Ferreira AGN; Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil., Neto MS; Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil., Dutra RP; Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil., Reis AS; Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil., Guerra RNM; Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil.; Department of Pathology, Federal University of Maranhão, São Luís, Maranhão, Brazil., Monteiro-Neto V; Department of Pathology, Federal University of Maranhão, São Luís, Maranhão, Brazil., Maciel MCG; Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil. marcia.maciel@unb.br.; Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil. marcia.maciel@unb.br.
المصدر: Probiotics and antimicrobial proteins [Probiotics Antimicrob Proteins] 2024 Jun; Vol. 16 (3), pp. 862-874. Date of Electronic Publication: 2023 May 16.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101484100 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1867-1314 (Electronic) Linking ISSN: 18671306 NLM ISO Abbreviation: Probiotics Antimicrob Proteins Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY. : Springer
مواضيع طبية MeSH: Bacterial Infections*/microbiology , Bacterial Infections*/prevention & control , Bacterial Infections*/immunology , Probiotics*/administration & dosage, Animals ; Humans ; Immunologic Factors ; Immunomodulation ; Lactobacillus/physiology
مستخلص: As resistance to conventional antibiotics among bacteria continues to increase, researchers are increasingly focusing on alternative strategies for preventing and treating bacterial infections, one of which is microbiota modulation. The objective of this review is to analyze the scientific literature on the immunomodulatory effects of probiotics in bacterial infections. This is an integrative review of the literature based on systematic steps, with searches performed in the databases Medline, PubMed, Scopus, Embase, and ScienceDirect. The most prevalent bacterial genera used to evaluate infectious processes were Salmonella, Escherichia, Klebsiella, and Streptococcus. Lactobacillus was the most commonly used probiotic genus, with Lactobacillus delbrueckii subsp. bulgaricus is the most frequently used species. In most studies, prophylactic treatment with concentrations of probiotics equal to or greater than 8 log CFU/mL was chosen. However, there was considerable heterogeneity in terms of effective treatment duration, indicating that the results cannot be generalized across all studies. This review found that probiotics interact with the immune system through different mechanisms and have a positive effect on preventing different types of bacterial infections.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: World Health Organization (2015) Global action plan on antimicrobial resistance. https://www.who.int/publications/i/item/9789241509763 . Accessed 15 Dec 2022.
CENTERS FOR DISEASE CONTROL AND, PREVENTION et al (2019) Antibiotic resistance threats in the United States, 2019. Atlanta, GA: US Department of Health and Human Services, CDC. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf . Accessed 03 Dec 2022.
O’Neil J (2016) Tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/sites/default/files/160518_Final paper_with cover.pdf . Accessed 01 Feb 2023.
O’Neil J (2014) Review on antibiotic resistance. Antimicrobial Resistance: tackling a crisis for the health and wealth of nations.Heal. Wealth Nations, p1–16. https://amr-review.org/sites/default/files/AMR Review Paper - Tackling a crisis for the health and wealth of nations_1.pdf . Accessed 01 Feb 2023.
Murray CJL et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655. https://doi.org/10.1016/S0140-6736(21)02724-0. (PMID: 10.1016/S0140-6736(21)02724-0)
Hauser AR, Mecsas J, Moir DT (2016) Beyond antibiotics: new therapeutic approaches for bacterial infections. Clin Infect Dis 63(1):89–95. https://doi.org/10.1093/cid/ciw200. (PMID: 10.1093/cid/ciw200270258264901866)
Derwa Y, Gracie DJ, Hamlin PJ, Ford AC (2017) Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 46:389–400. https://doi.org/10.1111/apt.14203. (PMID: 10.1111/apt.1420328653751)
Szajewska H, Kolodziej M, Gieruszczak-Bialek D, Skorka A, Ruszczynski M, Shamir R (2019) Systematic review with meta-analysis: Lactobacillus rhamnosus GG for treating acute gastroenteritis in children-a 2019 update. Aliment Pharmacol Ther 49:1376–1384. (PMID: 10.1111/apt.1526731025399)
Davani-davari D et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods v 8(3):92. (PMID: 10.3390/foods8030092)
FAO/WHO. Food and Agricultural Organization of the United Nations and World Health Organization (2002) Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations.
Hill C et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/nrgastro.2014.66. (PMID: 10.1038/nrgastro.2014.6624912386)
Cuevas-González PF, Liceaga AM, Aguilar-Toalá JE (2020) Postbiotics and paraprobiotics: from concepts to applications. Int Food Res J 136:109502. https://doi.org/10.1016/j.foodres.2020.109502. (PMID: 10.1016/j.foodres.2020.109502)
Rizzardini G et al (2012) Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: a randomisez, double-blind, placebo-controlled study. Br J Nutr 107(6):876–884. https://doi.org/10.1017/S000711451100420X. (PMID: 10.1017/S000711451100420X21899798)
Chifiriuc MC et al (2010) Patterns of colonization and immune response elicited from interactions between enteropathogenic bacteria, epithelial cells and probiotic fractions. Int J Biotechnol Mol Biol Res 1(4):47–57.
Kemgang TS et al (2016) Fermented milk with probiotic Lactobacillus rhamnosus S1K3 (MTCC5957) protects mice from Salmonella by enhancing immune and nonimmune protection mechanisms at the intestinal mucosal level. J Nutr Biochem 30:62–73. https://doi.org/10.1016/j.jnutbio.2015.11.018. (PMID: 10.1016/j.jnutbio.2015.11.01827012622)
Bermudez-Brito M et al (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174. (PMID: 10.1159/00034207923037511)
Ukena SN et al (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE 2(12):e1308. https://doi.org/10.1371/journal.pone.0001308. (PMID: 10.1371/journal.pone.0001308180740312110898)
Mennigen R et al (2009) Probiotic mixture VSL# 3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. https://doi.org/10.1152/ajpgi.90534.2008. (PMID: 10.1152/ajpgi.90534.200819221015)
Madsen K et al (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterol 121(3):580–591. https://doi.org/10.1053/gast.2001.27224. (PMID: 10.1053/gast.2001.27224)
Arpaia N et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455. https://doi.org/10.1038/nature12726. (PMID: 10.1038/nature12726242267733869884)
Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science 341:569–573. https://doi.org/10.1126/science.1241165. (PMID: 10.1126/science.124116523828891)
Menard O et al (2008) Gnotobiotic mouse immune response induced by Bifidobacterium sp. strains isolated from infants. Appl Environ Microbiol 74(3):660–666. https://doi.org/10.1128/AEM.01261-07. (PMID: 10.1128/AEM.01261-0718083875)
Shanahan F (2010) Probiotics in perspective. Gastroenterol 139(6):1808–1812. (PMID: 10.1053/j.gastro.2010.10.025)
Otutumi LK, Góis MB, Garcia ERM, Loddi MM (2012) Variations on the Efficacy of Probiotics in Poultry. In: RIGOBELO, C. Probiotics in animals. InTech. 203–230.
Sterlin D et al (2020) Human IgA binds a diverse array of commensal bacteria. J Exp Med 217(3). https://doi.org/10.1084/jem.20181635.
Mestecky J et al (2005) Mucosal immunoglobulins. Mucosal immunology, 3rd edn. Academic Press, Burlington, MA, pp 153–181. (PMID: 10.1016/B978-012491543-5/50013-9)
Pabst O (2012) New concepts in the generation and functions of IgA. Nat Rev Immunol 12(12):821–832. https://doi.org/10.1038/nri3322. (PMID: 10.1038/nri332223103985)
Whittemore R, Knafl K (2005) The integrative review: updated methodology. J Adv Nurs 52(5):546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x. (PMID: 10.1111/j.1365-2648.2005.03621.x16268861)
Santos C, Pimenta C, Nobre M (2007) A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Rev Latino-Am Enfermagem 15(3):2–5. https://doi.org/10.1590/S0104-11692007000300023. (PMID: 10.1590/S0104-11692007000300023)
Ouzzani M et al (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5(1):1–10. https://doi.org/10.1186/s13643-016-0384-4. (PMID: 10.1186/s13643-016-0384-4)
Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10(1):1–11. https://doi.org/10.1016/j.ijsu.2021.105906. (PMID: 10.1016/j.ijsu.2021.105906)
Sarkis-Onofre R et al (2021) How to properly use the PRISMA Statement. Syst Rev 10(1):1–3. https://doi.org/10.1186/s13643-021-01671-z. (PMID: 10.1186/s13643-021-01671-z)
Cordeiro MA et al (2019) Fermented whey dairy beverage offers protection against Salmonella enterica ssp. enterica serovar Typhimurium infection in mice. J Dairy Sci 102(8):6756–6765. https://doi.org/10.3168/jds.2019-16340. (PMID: 10.3168/jds.2019-1634031178187)
Dowdell P et al (2020) Probiotic activity of Enterococcus faecium and Lactococcus lactis isolated from thai fermented sausages and their protective effect against Clostridium difficile. Probiotics & Antimicro Prot 12(2):641–648. https://doi.org/10.1007/s12602-019-09536-7. (PMID: 10.1007/s12602-019-09536-7)
Jain S, Yadav H, Sinha PR (2009) Probiotic dahi containing Lactobacillus casei protects against Salmonella enteritidis infection and modulates the immune response in mice. J Med Food 12(3):576–583. https://doi.org/10.1089/jmf.2008.0246. (PMID: 10.1089/jmf.2008.024619627206)
Medici M et al (2005) Effect of fermented milk containing probiotic bacteria in the prevention of an enteroinvasive Escherichia coli infection in mice. J Dairy Res 72(2):243–249. https://doi.org/10.1017/S0022029905000750. (PMID: 10.1017/S002202990500075015909691)
Villena J et al (2006) Yoghurt accelerates the recovery of defense mechanisms against Streptococcus pneumoniae in protein-malnourished mice. Br J Nutr 95(3):591–602. https://doi.org/10.1079/BJN20051663. (PMID: 10.1079/BJN2005166316512946)
Alvarez S et al (2001) Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. J Food Prot 64(11):1768–1774. https://doi.org/10.4315/0362-028X-64.11.1768. (PMID: 10.4315/0362-028X-64.11.176811726157)
Tejada-Simon MV et al (1999) Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice. J Dairy Sci 82(4):649–660. https://doi.org/10.3168/jds.S0022-0302(99)75281-1. (PMID: 10.3168/jds.S0022-0302(99)75281-110212452)
Montijo-Prieto S et al (2015) A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice. Res Microbiol 166(8):626–632. https://doi.org/10.1016/j.resmic.2015.07.010. (PMID: 10.1016/j.resmic.2015.07.01026272025)
Kamaladevi A, Balamurugan K (2016) Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection. Food Funct 7(7):3211–3223. https://doi.org/10.1016/j.resmic.2015.07.010. (PMID: 10.1016/j.resmic.2015.07.01027338631)
Tsai Y, Cheng P, Pan T (2010) Immunomodulating activity of Lactobacillus paracasei subsp. paracasei NTU 101 in enterohemorrhagic Escherichia coli O157H7-infected mice. J Agric Food Chem 58(21):11265–11272. https://doi.org/10.1021/jf103011z. (PMID: 10.1021/jf103011z20942489)
Vieira AT et al (2016) Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium longum 51A. Microbes Infect 18(3):180–189. https://doi.org/10.1016/j.micinf.2015.10.008. (PMID: 10.1016/j.micinf.2015.10.00826548605)
Cooney MA et al (2014) A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334. Front. Cell Infect Microbiol 4:11. https://doi.org/10.3389/fcimb.2014.00011. (PMID: 10.3389/fcimb.2014.00011)
Deng Q et al (2015) Intravaginal lactic acid bacteria modulated local and systemic immune responses and lowered the incidence of uterine infections in periparturient dairy cows. PLoS ONE 10(4):e0124167. https://doi.org/10.1371/journal.pone.0124167. (PMID: 10.1371/journal.pone.0124167259190104412408)
Johnson-Henry KC et al (2005) Amelioration of the effects of Citrobacter rodentium infection in mice by pre-treatment with probiotics. J Infect Dis 191(12):2106–2117. https://doi.org/10.1086/430318. (PMID: 10.1086/43031815897997)
Mao J et al (2020) Lactobacillus rhamnosus GG attenuates lipopolysaccharide-induced inflammation and barrier dysfunction by regulating MAPK/NF-κB signaling and modulating metabolome in the piglet intestine. J Nutr 150(5):1313–1323. https://doi.org/10.1093/jn/nxaa009. (PMID: 10.1093/jn/nxaa00932027752)
Noto Llana M et al (2013) Consumption of Lactobacillus casei fermented milk prevents Salmonella reactive arthritis by modulating IL-23/IL-17 expression. PLoS ONE 8(12):e82588. https://doi.org/10.1371/journal.pone.0082588. (PMID: 10.1371/journal.pone.0082588243400483858332)
Salva S, Villena J, Alvarez S (2010) Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk: impact on intestinal and respiratory infections. Int J Food Microbiol 141(1–2):82–89. https://doi.org/10.1016/j.ijfoodmicro.2010.03.013. (PMID: 10.1016/j.ijfoodmicro.2010.03.01320395002)
Sharma R et al (2014) Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age 36(4):1–17. (PMID: 10.1007/s11357-014-9686-4)
Silva AM et al (2004) Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J Appl Microbiol 97(1):29–37. https://doi.org/10.1111/j.1365-2672.2004.02265.x. (PMID: 10.1111/j.1365-2672.2004.02265.x15186439)
Wilson AS et al (2020) Diet and the human gut microbiome: an international review. Dig Dis Sci 65(3):723–740. https://doi.org/10.1007/s10620-020-06112-w. (PMID: 10.1007/s10620-020-06112-w320608127117800)
Illikoud N et al (2022) Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol Lett. https://doi.org/10.1016/j.imlet.2022.11.002. (PMID: 10.1016/j.imlet.2022.11.00236334759)
Ha E, Zemel MB (2003) Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people. J Nutr Biochem 14(5):251–258. https://doi.org/10.1016/S0955-2863(03)00030-5. (PMID: 10.1016/S0955-2863(03)00030-512832028)
Ume ROOBAB et al (2020) Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci v 32:17–28. (PMID: 10.1016/j.cofs.2020.01.003)
Aspri M, Papademas P, Tsaltas D (2020) Review on non-dairy probiotics and their use in non-dairy based products. Fermentation 6(1):30. https://doi.org/10.3390/fermentation6010030. (PMID: 10.3390/fermentation6010030)
Kumar D et al (2022) Functional fermented probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: a perspective from Nutraceutical. Mol Nutr Food Res 66(14):2101059. https://doi.org/10.1002/mnfr.202101059. (PMID: 10.1002/mnfr.202101059)
Francisco GUARNER et al (2008) World Gastroenterology Organisation Practice Guideline: Probiotics and Prebiotics-May 2008: guideline. South Afr Gastroenterol Rev v 6(2):14–25.
BRASIL, Resolução (2002) n. 2, de 7 de janeiro de Aprova o Regulamento Técnico de Substâncias Bioativas e Probióticos Isolados com Alegação de Propriedades Funcional e ou de Saúde. Diário Oficial da União, Poder Executivo, de 9 de janeiro de 2002. https://www.saude.rj.gov.br/comum/code/MostrarArquivo.php?C=MjI1Mw%2 C%2 C Accessed 10 Jan 2023.
Izumo T et al (2011) Influence of Lactobacillus pentosus S-PT84 ingestion on the mucosal immunity of healthy and Salmonella typhimurium-infected mice. Biosci Microflora 30(2):27–35. https://doi.org/10.12938/bifidus.30.27. (PMID: 10.12938/bifidus.30.27250453114103635)
Nauciel C, Espinasse-Maes F (1992) Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun 60(2):450–454. https://doi.org/10.1128/iai.60.2.450-454.1992. (PMID: 10.1128/iai.60.2.450-454.19921730475257648)
Martinez MB, Trabulsi LR (2008) Enterobacteriaceae. In: Trabulsi LR, Alterthum F (eds) Editores. Microbiologia. Atheneu, São Paulo, pp 271–279.
Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(1):142–201. https://doi.org/10.1128/CMR.11.1.142. (PMID: 10.1128/CMR.11.1.1429457432121379)
Chang J, Park J, Kim S (2006) Dependence on p38 MAPK signaling in the up-regulation of TLR2, TLR4 and TLR9 gene expression in Trichomonas vaginalis‐treated HeLa cells. Immunol 118(2):164–170. https://doi.org/10.1111/j.1365-2567.2006.02347.x. (PMID: 10.1111/j.1365-2567.2006.02347.x)
Quan CP et al (1997) Natural polyreactive secretory immunoglobulin a autoantibodies as a possible barrier to infection in humans. Infect Immun 65(10):3997–4004. https://doi.org/10.1128/iai.65.10.3997-4004.1997. (PMID: 10.1128/iai.65.10.3997-4004.19979316998175574)
Mills KHG, Mcguirk P (2004) Antigen-specific regulatory T cells—their induction and role in infection. In: seminars in immunology. Acad Press 16:107–117. https://doi.org/10.1016/j.smim.2003.12.006. (PMID: 10.1016/j.smim.2003.12.006)
فهرسة مساهمة: Keywords: Bacterial; Immunomodulatory activity; Infectious diseases; Probiotics
المشرفين على المادة: 0 (Immunologic Factors)
تواريخ الأحداث: Date Created: 20230516 Date Completed: 20240525 Latest Revision: 20240628
رمز التحديث: 20240629
DOI: 10.1007/s12602-023-10090-6
PMID: 37191780
قاعدة البيانات: MEDLINE
الوصف
تدمد:1867-1314
DOI:10.1007/s12602-023-10090-6