دورية أكاديمية

Facial skeleton dysmorphology in syndromic craniosynostosis: differences between FGFR2 and no-FGFR2-related syndromes and relationship with skull base and facial sutural patterns.

التفاصيل البيبلوغرافية
العنوان: Facial skeleton dysmorphology in syndromic craniosynostosis: differences between FGFR2 and no-FGFR2-related syndromes and relationship with skull base and facial sutural patterns.
المؤلفون: Calandrelli R; Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, Rome, 00168, Italy. rosalinda.calandrelli@policlinicogemelli.it., Pilato F; Unit of Neurology, Department of Medicine, Neurophysiology, Università Campus Bio-Medico, Via Alvaro del Portillo, Rome, Italy.; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Rome, Italy., Massimi L; Pediatric Neurosurgery, Neurosurgery Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, Rome, 00168, Italy., D'Apolito G; Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, Rome, 00168, Italy., Colosimo C; Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, Rome, 00168, Italy.
المصدر: Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery [Childs Nerv Syst] 2023 Nov; Vol. 39 (11), pp. 3235-3247. Date of Electronic Publication: 2023 May 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8503227 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1433-0350 (Electronic) Linking ISSN: 02567040 NLM ISO Abbreviation: Childs Nerv Syst Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer International, c1985-
مواضيع طبية MeSH: Cranial Sutures*/surgery , Craniosynostoses*/diagnostic imaging , Craniosynostoses*/genetics, Humans ; Infant ; Cranial Fossa, Posterior ; Face ; Receptor, Fibroblast Growth Factor, Type 2/genetics ; Skull ; Skull Base ; Syndrome
مستخلص: Purpose: To assess the role of FGFR2 mutations and sutural synostotic patterns on facial skeleton dysmorphology in children with syndromic craniosynostosis.
Methods: Preoperative high-resolution CT images in 39 infants with syndromic craniosynostosis were evaluated. Patients were divided into infants with and without FGFR2 mutations; each group was split according to synostotic involvement of minor sutures/synchondroses: isolated or combined involvement of middle (MCF) and posterior cranial fossae (PCF). Quantitative analysis of the midface and mandible measures was performed. Each subgroup was compared with a group of age-matched healthy subjects.
Results: Twenty-four patients with FGFR2 related syndromes were clustered in 3 subgroups: MCF + PCF (8 patients, 5.4 ± 1.75 months), MCF (8 patients, 3.62 ± 1.68 months), and PCF (8 patients, 2.75 ± 0.46 months). Fifteen no-FGFR2 patients were clustered in 2 subgroups: MCF + PCF (7 patients, 9.42 ± 0.78 months) and PCF (8 patients, 7.37 ± 2.92 months). Both FGFR2 and no-FGFR2 groups with involvement of minor sutures coursing in MCF showed more facial sutural synostoses. Children with minor suture/synchondrosis synostosis of MCF (MCF-PCF and MCF subgroups) showed altered position of glenoid fossa and mandibular inclination ([Formula: see text]), but children in the FGFR2 group had also reduced midfacial depth and maxillary length ([Formula: see text]). Children with minor suture/synchondrosis synostosis of PCF (PCF subgroups) had reduced posterior mandibular height, but those children in the FGFR2 group also showed reduced intergonion distance ([Formula: see text]).
Conclusions: In children with syndromic craniosynostosis, both skull base and facial suture synostosis affect facial dysmorphology/hypoplasia. FGFR2 mutations may worsen facial hypoplasia both acting on bone development and causing an earlier premature closure of facial sutures.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Ko JM (2016) Genetic syndromes associated with craniosynostosis. J Korean Neurosurg Soc 59:187–191. https://doi.org/10.3340/jkns.2016.59.3.187. (PMID: 10.3340/jkns.2016.59.3.187272268474877538)
Anantheswar YN, Venkataramana NK (2009) Pediatric craniofacial surgery for craniosynostosis: our experience and current concepts: Parts -2. J Pediatr Neurosci 4:100–107. https://doi.org/10.4103/1817-1745.57328. (PMID: 10.4103/1817-1745.57328218871903162774)
Ea C, Hennocq Q, Picard A et al (2022) Growth charts in FGFR2- and FGFR3-related faciocraniosynostoses. Bone Rep 16:101524. https://doi.org/10.1016/j.bonr.2022.101524.
Festa F, Pagnoni M, Valerio R et al (2012) Orbital volume and surface after Le Fort III advancement in syndromic craniosynostosis. J Craniofac Surg 23:789–792. https://doi.org/10.1097/SCS.0b013e31824dbeec. (PMID: 10.1097/SCS.0b013e31824dbeec22565907)
Ganesh A, Edmond J, Forbes B et al (2019) An update of ophthalmic management in craniosynostosis. J AAPOS 23:66–76. https://doi.org/10.1016/j.jaapos.2018.10.016. (PMID: 10.1016/j.jaapos.2018.10.01630928366)
Runyan CM, Xu W, Alperovich M et al (2017) Minor suture fusion in syndromic craniosynostosis. Plast Reconstr Surg 140:434e–445e. https://doi.org/10.1097/PRS.0000000000003586. (PMID: 10.1097/PRS.000000000000358628574949)
Martínez-Abadías N, Percival C, Aldridge K et al (2010) Beyond the closed suture in apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth. Dev Dyn Off Publ Am Assoc Anat 239:3058–3071. https://doi.org/10.1002/dvdy.22414. (PMID: 10.1002/dvdy.22414)
Wang MM, Haveles CS, Zukotynski BK et al (2021) Facial suture pathology in syndromic craniosynostosis: human and animal studies. Ann Plast Surg 87:589–599. https://doi.org/10.1097/SAP.0000000000002822. (PMID: 10.1097/SAP.00000000000028228667083)
Calandrelli R, Pilato F, Massimi L et al (2018) Quantitative evaluation of facial hypoplasia and airway obstruction in infants with syndromic craniosynostosis: relationship with skull base and splanchnocranium sutural pattern. Neuroradiology 60:517–528. https://doi.org/10.1007/s00234-018-2005-5. (PMID: 10.1007/s00234-018-2005-529520643)
Holmes G, O’Rourke C, Motch Perrine SM et al (2018) Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Dev Camb Engl 145:dev166488. https://doi.org/10.1242/dev.166488.
Reitsma JH, Elmi P, Ongkosuwito EM et al (2013) A longitudinal study of dental arch morphology in children with the syndrome of Crouzon or Apert. Eur J Oral Sci 121:319–327. https://doi.org/10.1111/eos.12051. (PMID: 10.1111/eos.1205123841783)
Costaras-Volarich M, Pruzansky S (1984) Is the mandible intrinsically different in Apert and Crouzon syndromes? Am J Orthod 85:475–487. https://doi.org/10.1016/0002-9416(84)90087-3. (PMID: 10.1016/0002-9416(84)90087-36610361)
Flaherty K, Singh N, Richtsmeier JT (2016) Understanding craniosynostosis as a growth disorder. Wiley Interdiscip Rev Dev Biol 5:429–459. https://doi.org/10.1002/wdev.227. (PMID: 10.1002/wdev.227270021874911263)
Pelo S, Gasparini G, Di Petrillo A et al (2007) Distraction osteogenesis in the surgical treatment of craniostenosis: a comparison of internal and external craniofacial distractor devices. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 23:1447–1453. https://doi.org/10.1007/s00381-007-0475-6. (PMID: 10.1007/s00381-007-0475-6)
Purushothaman R, Cox TC, Maga AM, Cunningham ML (2011) Facial suture synostosis of newborn Fgfr1(P250R/+) and Fgfr2(S252W/+) mouse models of Pfeiffer and Apert syndromes. Birt Defects Res A Clin Mol Teratol 91:603–609. https://doi.org/10.1002/bdra.20811. (PMID: 10.1002/bdra.20811)
Eswarakumar VP, Monsonego-Ornan E, Pines M et al (2002) The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Dev Camb Engl 129:3783–3793. https://doi.org/10.1242/dev.129.16.3783. (PMID: 10.1242/dev.129.16.3783)
Rosenberg P, Arlis HR, Haworth RD et al (1997) The role of the cranial base in facial growth: experimental craniofacial synostosis in the rabbit. Plast Reconstr Surg 99:1396–1407. https://doi.org/10.1097/00006534-199704001-00030. (PMID: 10.1097/00006534-199704001-000309105368)
Stewart RE, Dixon G, Cohen A (1977) The pathogenesis of premature craniosynostosis in acrocephalosyndactyly (Apert’s syndrome). A reconsideration Plast Reconstr Surg 59:699–707. https://doi.org/10.1097/00006534-197705000-00013. (PMID: 10.1097/00006534-197705000-00013850706)
Lu X, Sawh-Martinez R, Forte AJ et al (2019) Mandibular spatial reorientation and morphological alteration of Crouzon and Apert syndrome. Ann Plast Surg 83:568–582. https://doi.org/10.1097/SAP.0000000000001811. (PMID: 10.1097/SAP.000000000000181131008788)
Britto JA, Evans RD, Hayward RD, Jones BM (2001) From genotype to phenotype: the differential expression of FGF, FGFR, and TGFbeta genes characterizes human cranioskeletal development and reflects clinical presentation in FGFR syndromes. Plast Reconstr Surg 108:2026–2039; discussion 2040–2046. https://doi.org/10.1097/00006534-200112000-00030.
Bachler M, Neubüser A (2001) Expression of members of the Fgf family and their receptors during midfacial development. Mech Dev 100:313–316. https://doi.org/10.1016/s0925-4773(00)00518-9. (PMID: 10.1016/s0925-4773(00)00518-911165488)
Massimi L, Bianchi F, Frassanito P et al (2019) Imaging in craniosynostosis: when and what? Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 35:2055–2069. https://doi.org/10.1007/s00381-019-04278-x. (PMID: 10.1007/s00381-019-04278-x)
Smartt JM, Elliott RM, Reid RR, Bartlett SP (2011) Analysis of differences in the cranial base and facial skeleton of patients with lambdoid synostosis and deformational plagiocephaly. Plast Reconstr Surg 127:303–312. https://doi.org/10.1097/PRS.0b013e3181f95cd8. (PMID: 10.1097/PRS.0b013e3181f95cd820871483)
Jeyasingh P, Agarwal AK, Gupta SC et al (1988) A study of cranio-facial indices in Uttar Pradesh crania. Anat Anz 165:345–349.
Kranioti EF, Iscan MY, Michalodimitrakis M (2008) Craniometric analysis of the modern Cretan population. Forensic Sci Int 180(110):e1-5. https://doi.org/10.1016/j.forsciint.2008.06.018. (PMID: 10.1016/j.forsciint.2008.06.018)
Calandrelli R, D’Apolito G, Massimi L et al (2016) Quantitative analysis of craniofacial dysmorphology in infants with anterior synostotic plagiocephaly. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 32:2339–2349. https://doi.org/10.1007/s00381-016-3218-8. (PMID: 10.1007/s00381-016-3218-8)
Calandrelli R, Pilato F, Massimi L et al (2020) Orbito-facial dysmorphology in patients with different degrees of trigonocephaly severity: quantitative morpho-volumetric analysis in infants with non-syndromic metopic craniosynostosis. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 36:1263–1273. https://doi.org/10.1007/s00381-019-04456-x. (PMID: 10.1007/s00381-019-04456-x)
Gasparini G, Saponaro G, Marianetti TM et al (2013) Mandibular alterations and facial lower third asymmetries in unicoronal synostosis. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 29:665–671. https://doi.org/10.1007/s00381-012-2002-7. (PMID: 10.1007/s00381-012-2002-7)
Kupka MJ, Aguet J, Wagner MM et al (2022) Preliminary experience with black bone magnetic resonance imaging for morphometry of the mandible and visualisation of the facial skeleton. Pediatr Radiol 52:951–958. https://doi.org/10.1007/s00247-021-05257-8. (PMID: 10.1007/s00247-021-05257-835076727)
Meazzini MC, Corradi F, Mazzoleni F et al (2021) Circummaxillary sutures in patients with Apert, Crouzon, and Pfeiffer syndromes compared to nonsyndromic children: growth, orthodontic, and surgical implications. Cleft Palate-Craniofacial J Off Publ Am Cleft Palate-Craniofacial Assoc 58:299–305. https://doi.org/10.1177/1055665620947616. (PMID: 10.1177/1055665620947616)
Woller JL, Kim KB, Behrents RG, Buschang PH (2014) An assessment of the maxilla after rapid maxillary expansion using cone beam computed tomography in growing children. Dent Press J Orthod 19:26–35. https://doi.org/10.1590/2176-9451.19.1.026-035.oar. (PMID: 10.1590/2176-9451.19.1.026-035.oar)
Calandrelli R, Pilato F, Marrazzo A et al (2021) Computer tomography-based quantitative analysis of the orbital proptosis severity in infants with syndromic craniosynostosis: case-control study. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 37:1659–1668. https://doi.org/10.1007/s00381-021-05062-6. (PMID: 10.1007/s00381-021-05062-6)
Baccetti T, Antonini A, Franchi L et al (1997) Glenoid fossa position in different facial types: a cephalometric study. Br J Orthod 24:55–59. https://doi.org/10.1093/ortho/24.1.55. (PMID: 10.1093/ortho/24.1.559088604)
فهرسة مساهمة: Keywords: FGFR2 mutations; Facial hypoplasia; Facial sutures; Skull base sutural pattern; Syndromic craniosynostosis
المشرفين على المادة: EC 2.7.10.1 (FGFR2 protein, human)
EC 2.7.10.1 (Receptor, Fibroblast Growth Factor, Type 2)
تواريخ الأحداث: Date Created: 20230517 Date Completed: 20231116 Latest Revision: 20231121
رمز التحديث: 20231215
DOI: 10.1007/s00381-023-05962-9
PMID: 37195419
قاعدة البيانات: MEDLINE
الوصف
تدمد:1433-0350
DOI:10.1007/s00381-023-05962-9