دورية أكاديمية

Abrupt expansion of climate change risks for species globally.

التفاصيل البيبلوغرافية
العنوان: Abrupt expansion of climate change risks for species globally.
المؤلفون: Pigot AL; Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK. a.pigot@ucl.ac.uk., Merow C; Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA., Wilson A; Department of Geography, University at Buffalo, Buffalo, NY, USA., Trisos CH; African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa.
المصدر: Nature ecology & evolution [Nat Ecol Evol] 2023 Jul; Vol. 7 (7), pp. 1060-1071. Date of Electronic Publication: 2023 May 18.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101698577 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-334X (Electronic) Linking ISSN: 2397334X NLM ISO Abbreviation: Nat Ecol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature
مواضيع طبية MeSH: Climate Change* , Global Warming*, Temperature ; Adaptation, Physiological ; Acclimatization
مستخلص: Climate change is already exposing species to dangerous temperatures driving widespread population and geographical contractions. However, little is known about how these risks of thermal exposure will expand across species' existing geographical ranges over time as climate change continues. Here, using geographical data for approximately 36,000 marine and terrestrial species and climate projections to 2100, we show that the area of each species' geographical range at risk of thermal exposure will expand abruptly. On average, more than 50% of the increase in exposure projected for a species will occur in a single decade. This abruptness is partly due to the rapid pace of future projected warming but also because the greater area available at the warm end of thermal gradients constrains species to disproportionately occupy sites close to their upper thermal limit. These geographical constraints on the structure of species ranges operate both on land and in the ocean and mean that, even in the absence of amplifying ecological feedbacks, thermally sensitive species may be inherently vulnerable to sudden warming-driven collapse. With higher levels of warming, the number of species passing these thermal thresholds, and at risk of abrupt and widespread thermal exposure, increases, doubling from less than 15% to more than 30% between 1.5 °C and 2.5 °C of global warming. These results indicate that climate threats to thousands of species are expected to expand abruptly in the coming decades, thereby highlighting the urgency of mitigation and adaptation actions.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020). (PMID: 3202962810.1126/science.aax8591)
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016). (PMID: 27930674514779710.1371/journal.pbio.2001104)
Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018). (PMID: 10.1111/gcb.14361)
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019). (PMID: 3101930210.1038/s41586-019-1132-4)
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020). (PMID: 3245142810.1038/s41559-020-1198-2)
Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005). (PMID: 2135243710.1111/j.1461-0248.2005.00824.x)
Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022). (PMID: 3523118210.1146/annurev-arplant-102820-012804)
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018). (PMID: 2977375110.1126/science.aar3646)
Urban, M. C. Climate change. Accelerating extinction risk from climate change. Science 348, 571–573 (2015). (PMID: 2593155910.1126/science.aaa4984)
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020). (PMID: 3232206310.1038/s41586-020-2189-9)
Stanton, J. C., Shoemaker, K. T., Pearson, R. G. & Akçakaya, H. R. Warning times for species extinctions due to climate change. Glob. Change Biol. 21, 1066–1077 (2015). (PMID: 10.1111/gcb.12721)
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012). (PMID: 22586104336521410.1073/pnas.1116791109)
Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017). (PMID: 29109975566559510.1126/sciadv.1701413)
Trull, N., Böhm, M. & Carr, J. Patterns and biases of climate change threats in the IUCN Red List. Conserv. Biol. 32, 135–147 (2018). (PMID: 2886190310.1111/cobi.13022)
Akçakaya, H. R., Butchart, S., Mace, G. M., Stuart, S. N. & Hilton-Taylor, C. Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob. Change Biol. 12, 2037–2043 (2006). (PMID: 10.1111/j.1365-2486.2006.01253.x)
Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. Biol. Sci. 280, 20122829 (2013). (PMID: 233257743574333)
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018). (PMID: 2930201110.1126/science.aan8048)
Ratnayake, H. U., Kearney, M. R., Govekar, P., Karoly, D. & Welbergen, J. A. Forecasting wildlife die-offs from extreme heat events. Anim. Conserv. 22, 386–395 (2019). (PMID: 10.1111/acv.12476)
Hansen, B. B., Grøtan, V., Herfindal, I. & Lee, A. M. The Moran effect revisited: spatial population synchrony under global warming. Ecography 43, 1591–1602 (2020). (PMID: 10.1111/ecog.04962)
Dietzel, A., Connolly, S. R., Hughes, T. P. & Bode, M. The spatial footprint and patchiness of large-scale disturbances on coral reefs.Glob. Change Biol. 27, 4825–4838 (2021). (PMID: 10.1111/gcb.15805)
Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009). (PMID: 19124774263006010.1073/pnas.0811729106)
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010). (PMID: 2066845010.1038/nature09329)
Pigot, A. L., Owens, I. P. F. & Orme, C. D. L. The environmental limits to geographic range expansion in birds. Ecol. Lett. 13, 705–715 (2010). (PMID: 2041228110.1111/j.1461-0248.2010.01462.x)
Stewart, S. B. et al. Climate extreme variables generated using monthly time‐series data improve predicted distributions of plant species. Ecography 44, 626–639 (2021). (PMID: 10.1111/ecog.05253)
Stillman, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019). (PMID: 3072413210.1152/physiol.00040.2018)
Sognnaes, I. et al. A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nat. Clim. Change 11, 1055–1062 (2021). (PMID: 10.1038/s41558-021-01206-3)
Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018). (PMID: 10.1038/s41558-018-0187-9)
Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015). (PMID: 10.1038/nclimate2656)
Terborgh, J. On the notion of favorableness in plant ecology. Am. Nat. 107, 481–501 (1973). (PMID: 10.1086/282852)
Gross, K. & Snyder-Beattie, A. A general, synthetic model for predicting biodiversity gradients from environmental geometry. Am. Nat. 188, E85–E97 (2016). (PMID: 2762288110.1086/688171)
Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013). (PMID: 2385864810.1890/12-1257.1)
Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013). (PMID: 10.1038/nclimate1674)
Paquette, A. & Hargreaves, A. L. Biotic interactions are more often important at species’ warm versus cool range edges. Ecol. Lett. 24, 2427–2438 (2021). (PMID: 3445340610.1111/ele.13864)
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012). (PMID: 10.1038/nclimate1539)
Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021). (PMID: 3354213710.1126/science.abd4605)
Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Phenological asynchrony: a ticking time-bomb for seemingly stable populations? Ecol. Lett. 23, 1766–1775 (2020). (PMID: 3297501710.1111/ele.13603)
Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017). (PMID: 29133415572425110.1073/pnas.1705897114)
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018). (PMID: 10.1038/s41558-018-0231-9)
Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013). (PMID: 23950785368042710.1371/journal.pone.0065427)
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022). (PMID: 3607483110.1126/science.abn7950)
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001). (PMID: 1159593910.1038/35098000)
Ramiadantsoa, T., Stegner, M. A., Williams, J. W. & Ives, A. R. The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. Ecology 100, e02579 (2019). (PMID: 3070745310.1002/ecy.2579)
Sagarin, R. D., Gaines, S. D. & Gaylord, B. Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol. Evol. 21, 524–530 (2006). (PMID: 1681558810.1016/j.tree.2006.06.008)
Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019). (PMID: 30740843685059110.1111/ele.13222)
Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011). (PMID: 2205304510.1126/science.1210288)
Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019). (PMID: 3094447510.1038/s41586-019-1081-y)
Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007). (PMID: 1727272010.1126/science.1136401)
Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012). (PMID: 10.1038/nclimate1514)
Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017). (PMID: 28474676542416910.1038/ncomms15399)
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015). (PMID: 2634829110.1038/ncomms9221)
Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017). (PMID: 2899366710.1038/s41559-017-0332-2)
Brinton, E., Ohman, M. D., Townsend, A. W., Knight, M. D. & Bridgeman, A. L. Euphausiids of the World Ocean (Springer, 2000).
Jereb, P. & Roper, C. F. E. Cephalopods of the World: an Annotated and Illustrated Catalogue of Cephalopod Species Known to Date (FAO, 2005).
Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007). (PMID: 17686977194892210.1073/pnas.0704469104)
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016). (PMID: 10.5194/gmd-9-1937-2016)
Chen, D. et al. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 147–286 (Cambridge Univ. Press, 2021).
Hawkins, E. & Sutton, R. Time of emergence of climate signals.Geophys. Res. Lett. https://doi.org/10.1029/2011GL050087 (2012). (PMID: 10.1029/2011GL050087)
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008). (PMID: 18458348237333310.1073/pnas.0709472105)
Müller, H. G. & Wang, J. L. Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics 50, 61–76 (1994). (PMID: 808661610.2307/2533197)
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
Santafe, G., Calvo, B., Perez, A. & Lozano, J. A. bde: Bounded density estimation. R package v.1.0.1 https://CRAN.R-project.org/package=bde (2015).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017). (PMID: 28872642558439610.1038/sdata.2017.122)
Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2017). (PMID: 10.1111/geb.12693)
Jetz, W. & Rahbek, C. Geometric constraints explain much of the species richness pattern in African birds. Proc. Natl Acad. Sci. USA 98, 5661–5666 (2001). (PMID: 113443073326910.1073/pnas.091100998)
Storch, D. et al. Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9, 1308–1320 (2006). (PMID: 1711800510.1111/j.1461-0248.2006.00984.x)
Lovell, R. S. L., Blackburn, T. M., Dyer, E. E. & Pigot, A. L. Environmental resistance predicts the spread of alien species. Nat. Ecol. Evol. 5, 322–329 (2021). (PMID: 3349559310.1038/s41559-020-01376-x)
Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013). (PMID: 10.1038/nclimate1635)
IUCN Species Survival Commission. IUCN Red List Categories and Criteria (IUCN, 2001).
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014). (PMID: 2520543610.1111/ele.12348)
Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013). (PMID: 2410805010.1038/nature12540)
Roskov, Y. et al. Species 2000 & ITIS Catalogue of Life, 2017 Annual Checklist; http://www.catalogueoflife.org/annual-checklist/2017 (DVD, 2017).
سلسلة جزيئية: figshare 10.6084/m9.figshare.22723889
تواريخ الأحداث: Date Created: 20230518 Date Completed: 20230712 Latest Revision: 20231219
رمز التحديث: 20231220
DOI: 10.1038/s41559-023-02070-4
PMID: 37202503
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-334X
DOI:10.1038/s41559-023-02070-4