دورية أكاديمية

The Cell Tracking Challenge: 10 years of objective benchmarking.

التفاصيل البيبلوغرافية
العنوان: The Cell Tracking Challenge: 10 years of objective benchmarking.
المؤلفون: Maška M; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic., Ulman V; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.; IT4Innovations National Supercomputing Center, VSB - Technical University of Ostrava, Ostrava, Czech Republic., Delgado-Rodriguez P; Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain.; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain., Gómez-de-Mariscal E; Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain.; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.; Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal., Nečasová T; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic., Guerrero Peña FA; Centro de Informatica, Universidade Federal de Pernambuco, Recife, Brazil.; Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA, USA., Ren TI; Centro de Informatica, Universidade Federal de Pernambuco, Recife, Brazil., Meyerowitz EM; Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA., Scherr T; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany., Löffler K; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany., Mikut R; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany., Guo T; The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA., Wang Y; The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA., Allebach JP; The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA., Bao R; Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.; CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA., Al-Shakarji NM; CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA., Rahmon G; CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA., Toubal IE; CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA., Palaniappan K; CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA., Lux F; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic., Matula P; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic., Sugawara K; Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.; Centre National de la Recherche Scientifique (CNRS), Paris, France., Magnusson KEG; Raysearch Laboratories AB, Stockholm, Sweden., Aho L; Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA., Cohen AR; Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA., Arbelle A; School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel., Ben-Haim T; School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel., Raviv TR; School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel., Isensee F; Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.; Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany., Jäger PF; Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany.; Interactive Machine Learning Group, German Cancer Research Center (DKFZ), Heidelberg, Germany., Maier-Hein KH; Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.; Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany., Zhu Y; School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.; Griffith University, Nathan, Queensland, Australia., Ederra C; Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain., Urbiola A; Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain., Meijering E; School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia., Cunha A; Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA, USA., Muñoz-Barrutia A; Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain.; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain., Kozubek M; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic. kozubek@fi.muni.cz., Ortiz-de-Solórzano C; Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain. codesolorzano@unav.es.
المصدر: Nature methods [Nat Methods] 2023 Jul; Vol. 20 (7), pp. 1010-1020. Date of Electronic Publication: 2023 May 18.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101215604 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1548-7105 (Electronic) Linking ISSN: 15487091 NLM ISO Abbreviation: Nat Methods Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, c2004-
مواضيع طبية MeSH: Benchmarking* , Cell Tracking*/methods, Machine Learning ; Algorithms
مستخلص: The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
(© 2023. The Author(s).)
References: May, M., Denecke, B., Schroeder, T., Götz, M. & Faissner, A. Cell tracking in vitro reveals that the extracellular matrix glycoprotein Tenascin-C modulates cell cycle length and differentiation in neural stem/progenitor cells of the developing mouse spinal cord. Biol. Open 7, bio027730 (2018). (PMID: 10.1242/bio.027730300458596078350)
Kazwiny, Y. et al. Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline explicit active surfaces (BEAS) cell tracking. Sci. Rep. 11, 10937 (2021). (PMID: 10.1038/s41598-021-90448-4340354118149687)
Lovas, J. R. & Yuste, R. Ensemble synchronization in the reassembly of Hydra’s nervous system. Curr. Biol. 31, 3784–3796 (2022). (PMID: 10.1016/j.cub.2021.06.047)
Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019). (PMID: 10.1038/s41556-018-0251-830602772)
Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021). (PMID: 10.1038/s41592-021-01203-634341583)
Girkin, J. M. & Carvalho, M. T. The light-sheet microscopy revolution. J. Optics 20, 053002 (2018). (PMID: 10.1088/2040-8986/aab58a)
Meijering, E. A bird’s-eye view of deep learning in bioimage analysis. Comput. Struct. Biotechnol. J. 18, 2312–2325 (2020). (PMID: 10.1016/j.csbj.2020.08.003329948907494605)
Maška, M. et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617 (2014). (PMID: 10.1093/bioinformatics/btu080245267114029039)
Ulman, V. et al. An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141–1152 (2017). (PMID: 10.1038/nmeth.4473290834035777536)
Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science Vol. 9351 (Eds. Navab, N. et al.) 234–241 (Springer, Cham, 2015).
Svoboda, D. & Ulman, V. MitoGen: a framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans. Med. Imaging 36, 310–321 (2017). (PMID: 10.1109/TMI.2016.260654527623575)
Sorokin, D. V. et al. FiloGen: a model-based generator of synthetic 3-D time-lapse sequences of single motile cells with growing and branching filopodia. IEEE Trans. Med. Imaging 37, 2630–2641 (2018). (PMID: 10.1109/TMI.2018.284588429994200)
Guerrero Peña, F. A. et al. J-regularization improves imbalanced multiclass segmentation. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 1–5 (IEEE, 2020).
Scherr, T., Löffler, K., Böhland, M. & Mikut, R. Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy. PLoS One 15, e0243219 (2020). (PMID: 10.1371/journal.pone.0243219332904327723299)
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a self-configuring method for deep learning based biomedical image segmentation. Nat. Methods 18, 203–211 (2021). (PMID: 10.1038/s41592-020-01008-z33288961)
Löffler, K. & Mikut, R. EmbedTrack: simultaneous cell segmentation and tracking through learning offsets and clustering bandwidths. IEEE Access 10, 77147–77157 (2022). (PMID: 10.1109/ACCESS.2022.3192880)
Magnusson, K. E. G., Jaldén, J., Gilbert, P. M. & Blau, H. M. Global linking of cell tracks using the Viterbi algorithm. IEEE Trans. Med. Imaging 34, 1–19 (2015). (PMID: 10.1109/TMI.2014.2370951)
Guo, T., Wang, Y., Solorio, L. & Allebach, J. P. Training a universal instance segmentation network for live cell images of various cell types and imaging modalities. Preprint at https://doi.org/10.48550/arxiv.2207.14347 (2022).
Arbelle, A., Cohen, S. & Riklin Raviv, T. Dual-task ConvLSTM-UNet for instance segmentation of weakly annotated microscopy videos. IEEE Trans. Med. Imaging 41, 1948–1960 (2022). (PMID: 10.1109/TMI.2022.3152927)
Ben-Haim, T & Riklin Raviv, T. Graph neural network for cell tracking in microscopy videos. In Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science Vol. 13681 (Eds. Avidan, S. et al.) (Springer, Cham, 2022).
Sugawara, K., Çevrim, Ç. & Averof, M. Tracking cell lineages in 3D by incremental deep learning. eLife 11, e69380 (2022). (PMID: 10.7554/eLife.69380349896758741210)
Lux, F. & Matula, P. DIC image segmentation of dense cell populations by combining deep learning and watershed. In Proceedings of the 16th IEEE International Symposium on Biomedical Imaging, 236–239 (IEEE, 2019).
Bao, R., Al-Shakarji, N. M., Bunyak, F. & Palaniappan, K. DMNet: dual-stream marker guided deep network for dense cell segmentation and lineage tracking. In IEEE International Conference on Computer Vision (ICCV) Workshop on Computer Vision for Automated Medical Diagnosis, 3354–3363 (IEEE, 2021).
Rahmon, G., Bunyak, F. & Palaniappan, K. Motion U-Net: multi-cue encoder–decoder network for motion segmentation. In Proceedings of the IEEE International Conference on Pattern Recognition, 8125–8132 (IEEE, 2021).
Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580–587 (IEEE, 2014).
Wang, J. et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2021). (PMID: 10.1109/TPAMI.2020.298368632248092)
Malin-Mayor, C. et al. Automated reconstruction of whole-embryo lineages by learning from sparse annotations. Nat. Biotechnol. 41, 44–49 (2023). (PMID: 10.1038/s41587-022-01427-736065022)
Horn, B. K. & Schunck, B. G. Determining optical flow. Artif. Intell. 17, 185–203 (1981). (PMID: 10.1016/0004-3702(81)90024-2)
Dosovitskiy, A. et al. Flownet: learning optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, 2758–2766 (IEEE, 2015).
Ranjan, A. & Black, M. J. Optical flow estimation using a spatial pyramid network. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 4161–4170 (IEEE, 2017).
Sun, D., Yang, X., Liu, M. Y. & Kautz, J. Pwc-net: CNNs for optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8934–8943 (IEEE, 2018).
Teed, Z. & Deng, J. Raft: recurrent all-pairs field transforms for optical flow. In European Conference on Computer Vision, 402–419 (Springer, 2020).
Chan, K. C., Wang, X., Yu, K., Dong, C. & Loy, C. C. BasicVSR: the search for essential components in video super-resolution and beyond. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4947–4956 (IEEE, 2021).
Niklaus, S., Hu, P. & Chen, J. Splatting-based synthesis for video frame interpolation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 713–723 (IEEE, 2023).
Osokin, A., Chessel, A., Carazo Salas, R. E. & Vaggi, F. GANs for biological image synthesis. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2233–2241 (2017).
Magnusson, K. E. G. & Jaldén, J. Tracking of non-Brownian particles using the Viterbi algorithm. In Proceedings of the 12th IEEE International Symposium on Biomedical Imaging, 380–384 (IEEE, 2015).
Arzt, M. et al. LABKIT: labeling and segmentation toolkit for big image data. Front. Comput. Sci. 4, 777728 (2022). (PMID: 10.3389/fcomp.2022.777728)
Akbaş, C. E., Ulman, V., Maška, M., Jug, F. & Kozubek, M. Automatic fusion of segmentation and tracking labels. In Computer Vision – ECCV 2018 Workshops, LNCS vol. 11134, 446–454 (Springer, 2019).
Matula, P. et al. Cell tracking accuracy measurement based on comparison of acyclic oriented graphs. PLoS One 10, e0144959 (2015). (PMID: 10.1371/journal.pone.0144959266836084686175)
Guerrero Peña, F. A. et al. Multiclass weighted loss for instance segmentation of cluttered cells. In 25th IEEE International Conference on Image Processing (ICIP), 2451–2455 (IEEE, 2018).
Guerrero Peña, F. A., Fernandez, P. D. M., Ren, T. I. & Cunha A. A weakly supervised method for instance segmentation of biological cells. In Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data, LNCS vol. 11795, 216–224 (Springer, 2019).
Padfield, D., Rittscher, J. & Roysam, B. Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis. Med. Image Anal. 15, 650–668 (2011). (PMID: 10.1016/j.media.2010.07.00620864383)
Löffler, K., Scherr, T. & Mikut, R. A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction. PLoS One 16, e0249257 (2021). (PMID: 10.1371/journal.pone.0249257344920158423278)
Antonelli, M. et al. The medical segmentation decathlon. Nature Commun 12, 4128 (2022). (PMID: 10.1038/s41467-022-30695-9)
Neven, D., Brabandere, B. D., Proesmans, M. & Van Gool, L. Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8837–8845 (IEEE, 2019).
Romera, E., Álvarez, J. M., Bergasa, L. M. & Arroyo, R. ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans. Intell. Transport. Syst. 19, 263–272 (2018). (PMID: 10.1109/TITS.2017.2750080)
R Core Team. R: a language and environment for statistical computing https://www.R-project.org/ (2017).
معلومات مُعتمدة: R01 NS110915 United States NS NINDS NIH HHS; United States HHMI Howard Hughes Medical Institute
تواريخ الأحداث: Date Created: 20230518 Date Completed: 20230712 Latest Revision: 20230801
رمز التحديث: 20230802
مُعرف محوري في PubMed: PMC10333123
DOI: 10.1038/s41592-023-01879-y
PMID: 37202537
قاعدة البيانات: MEDLINE
الوصف
تدمد:1548-7105
DOI:10.1038/s41592-023-01879-y