دورية أكاديمية

Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome.

التفاصيل البيبلوغرافية
العنوان: Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome.
المؤلفون: Suber TL; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA. subertl2@upmc.edu.; Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. subertl2@upmc.edu., Wendell SG; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Mullett SJ; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Zuchelkowski B; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA., Bain W; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.; Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA., Kitsios GD; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.; Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., McVerry BJ; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.; Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Ray P; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.; Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Ray A; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.; Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Mallampalli RK; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA., Zhang Y; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA., Shah F; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.; Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA., Nouraie SM; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA., Lee JS; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University at St. Louis, St. Louis, MO, USA.
المصدر: Respiratory research [Respir Res] 2023 May 20; Vol. 24 (1), pp. 136. Date of Electronic Publication: 2023 May 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Ltd Country of Publication: England NLM ID: 101090633 Publication Model: Electronic Cited Medium: Internet ISSN: 1465-993X (Electronic) Linking ISSN: 14659921 NLM ISO Abbreviation: Respir Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 2001- : London : BioMed Central Ltd.
Original Publication: London : Current Science Ltd., c2000-
مواضيع طبية MeSH: Respiratory Distress Syndrome*/diagnosis , Respiratory Insufficiency*/diagnosis , Respiratory Insufficiency*/complications, Humans ; Acetylcarnitine ; Case-Control Studies ; Biomarkers ; Fatty Acids
مستخلص: Background: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure.
Methods: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data.
Results: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively).
Conclusions: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.
(© 2023. The Author(s).)
References: Lancet Respir Med. 2020 Mar;8(3):247-257. (PMID: 31948926)
Front Physiol. 2020 Jul 09;11:794. (PMID: 32733282)
Crit Care. 2019 Jul 1;23(1):236. (PMID: 31262340)
Sci Rep. 2020 Jan 30;10(1):1505. (PMID: 32001725)
Crit Care Med. 2019 Feb;47(2):210-218. (PMID: 30379669)
Surgery. 1970 Jul;68(1):175-9. (PMID: 10483466)
Am J Physiol Lung Cell Mol Physiol. 2014 Jun 1;306(11):L957-61. (PMID: 24727586)
J Biol Chem. 2015 Sep 25;290(39):23897-904. (PMID: 26240137)
J Biol Chem. 2014 Apr 11;289(15):10668-10679. (PMID: 24591516)
Sci Rep. 2021 Jan 14;11(1):1435. (PMID: 33446866)
Prenat Diagn. 1996 Feb;16(2):117-24. (PMID: 8650121)
J Proteome Res. 2014 Feb 7;13(2):640-9. (PMID: 24289193)
N Engl J Med. 2000 May 4;342(18):1301-8. (PMID: 10793162)
Am J Physiol Lung Cell Mol Physiol. 2023 Mar 1;324(3):L297-L306. (PMID: 36648136)
Crit Care. 2014 Nov 20;18(6):594. (PMID: 25672613)
PLoS One. 2019 Nov 14;14(11):e0224565. (PMID: 31725748)
Ann Am Thorac Soc. 2015 Mar;12 Suppl 1:S58-63. (PMID: 25830838)
J Clin Invest. 1997 Jan 15;99(2):163-8. (PMID: 9005983)
Metabolomics. 2016 Aug;12(8):. (PMID: 28217037)
PLoS One. 2021 Jun 4;16(6):e0252719. (PMID: 34086784)
Am J Respir Crit Care Med. 2017 Feb 1;195(3):331-338. (PMID: 27513822)
N Engl J Med. 1989 May 4;320(18):1219. (PMID: 2710197)
Am J Physiol Lung Cell Mol Physiol. 2021 Dec 1;321(6):L1067-L1068. (PMID: 34668417)
Am J Physiol Lung Cell Mol Physiol. 2021 May 1;320(5):L821-L831. (PMID: 33565357)
Ann Am Thorac Soc. 2021 Jul;18(7):1202-1210. (PMID: 33544045)
JCI Insight. 2018 May 3;3(9):. (PMID: 29720570)
Ann N Y Acad Sci. 2004 Nov;1033:30-41. (PMID: 15591001)
Eur Respir Rev. 2020 Jul 3;29(156):. (PMID: 32620587)
J Pharmacol Exp Ther. 2002 Jul;302(1):232-9. (PMID: 12065722)
Environ Health Perspect. 2020 Apr;128(4):47004. (PMID: 32255670)
Biochem Biophys Res Commun. 1988 Feb 15;150(3):1077-82. (PMID: 3342059)
Sci Rep. 2019 Feb 14;9(1):2108. (PMID: 30765824)
FASEB J. 2015 Jan;29(1):336-45. (PMID: 25342132)
Lancet Respir Med. 2020 Dec;8(12):1209-1218. (PMID: 32861275)
Am J Physiol Lung Cell Mol Physiol. 2018 Oct 1;315(4):L526-L534. (PMID: 29952222)
Lancet Respir Med. 2014 Aug;2(8):611-20. (PMID: 24853585)
Am J Respir Crit Care Med. 2021 Jun 15;203(12):1449-1451. (PMID: 33565943)
JPEN J Parenter Enteral Nutr. 2017 Sep;41(7):1213-1221. (PMID: 27358332)
Eur Respir J. 2012 Aug;40(2):345-55. (PMID: 22183483)
Ann Am Thorac Soc. 2016 Oct;13(10):1742-1751. (PMID: 27403914)
Crit Care Med. 2019 Dec;47(12):1724-1734. (PMID: 31634231)
Metabolism. 1981 Aug;30(8):765-76. (PMID: 6790901)
Clin Chem. 1997 Nov;43(11):2106-13. (PMID: 9365395)
Intensive Care Med. 2018 Nov;44(11):1859-1869. (PMID: 30291376)
Environ Res. 2022 Mar;204(Pt B):112111. (PMID: 34563522)
Crit Care. 1998;2(1):29-34. (PMID: 11056707)
PLoS One. 2014 Jan 30;9(1):e87538. (PMID: 24498130)
Pharmacol Rep. 2007 Sep-Oct;59(5):483-99. (PMID: 18048949)
Clin Pharmacokinet. 2012 Sep 1;51(9):553-72. (PMID: 22804748)
Am J Epidemiol. 2011 Apr 1;173(7):731-8. (PMID: 21415029)
J Lipid Res. 2021;62:100069. (PMID: 33757734)
PLoS One. 2011;6(7):e21230. (PMID: 21760889)
Metabolomics. 2021 Jan 11;17(1):9. (PMID: 33428023)
Am J Physiol Lung Cell Mol Physiol. 2017 May 1;312(5):L703-L709. (PMID: 28258106)
Crit Care Explor. 2021 Aug 19;3(8):e0518. (PMID: 34476405)
Cell Metab. 2012 May 2;15(5):764-77. (PMID: 22560225)
JAMA. 2013 Oct 16;310(15):1591-600. (PMID: 24108501)
Diabetes Metab J. 2016 Oct;40(5):376-385. (PMID: 27098507)
Am J Respir Crit Care Med. 2021 Jun 15;203(12):1503-1511. (PMID: 33465019)
Am J Respir Cell Mol Biol. 2019 Feb;60(2):167-178. (PMID: 30183330)
Redox Biol. 2021 May;41:101907. (PMID: 33667994)
Endocrinology. 2020 Feb 1;161(2):. (PMID: 31900483)
Metabolites. 2021 Jan 14;11(1):. (PMID: 33466750)
Hepatology. 2009 Jan;49(1):106-15. (PMID: 19053045)
Nephrol Dial Transplant. 2020 Oct 1;35(10):1652-1662. (PMID: 33022712)
معلومات مُعتمدة: K24 HL143285 United States HL NHLBI NIH HHS; R01 HL142084 United States HL NHLBI NIH HHS; P01 HL114453 United States HL NHLBI NIH HHS; KL2 TR001856 United States NH NIH HHS; S10ODS023402 United States NH NIH HHS; S10 OD023402 United States OD NIH HHS; P01HL114453 United States NH NIH HHS; R01 HL136143 United States HL NHLBI NIH HHS
فهرسة مساهمة: Keywords: Acute respiratory distress syndrome; Acylcarnitines; Fatty acid oxidation; Metabolomics; Subphenotypes
المشرفين على المادة: S1HB7P0O16 (octanoylcarnitine)
6DH1W9VH8Q (Acetylcarnitine)
0 (Biomarkers)
0 (Fatty Acids)
تواريخ الأحداث: Date Created: 20230520 Date Completed: 20230522 Latest Revision: 20240618
رمز التحديث: 20240618
مُعرف محوري في PubMed: PMC10199668
DOI: 10.1186/s12931-023-02447-w
PMID: 37210531
قاعدة البيانات: MEDLINE
الوصف
تدمد:1465-993X
DOI:10.1186/s12931-023-02447-w