دورية أكاديمية

Risk assessment of ionizing radiation and radiological thresholds to compound an environmental baseline for the unconventional gas industry.

التفاصيل البيبلوغرافية
العنوان: Risk assessment of ionizing radiation and radiological thresholds to compound an environmental baseline for the unconventional gas industry.
المؤلفون: Lima GFC; Nuclear Technology Development Center (CDTN), Belo Horizonte, MG, 31270-901, Brazil. gustavofilemon2@gmail.com.br.; Department of Transports Engineering, Federal Centre for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, MG, 30421-169, Brazil. gustavofilemon2@gmail.com.br., Vasconcelos DC; Nuclear Technology Development Center (CDTN), Belo Horizonte, MG, 31270-901, Brazil., De Carvalho Filho CA; Nuclear Technology Development Center (CDTN), Belo Horizonte, MG, 31270-901, Brazil., Moreira RM; Nuclear Technology Development Center (CDTN), Belo Horizonte, MG, 31270-901, Brazil., Almeida PHC; Geosciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 30421-169, Brazil.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2023 May 22; Vol. 195 (6), pp. 707. Date of Electronic Publication: 2023 May 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Natural Gas* , Groundwater*, Oil and Gas Fields ; Environmental Monitoring ; Risk Assessment ; Radiation, Ionizing
مستخلص: The exploration of unconventional hydrocarbons may be very effective in promoting economic development and confronting energy crisis around the world. However, the environmental risks associated with this practice might be an impediment if not adequately dimensioned. In this context, naturally occurring radioactive materials and ionizing radiation are sensitive aspects in the unconventional gas industry that may compromise the environmental sustainability of gas production and they should be properly monitored. This paper provides a radioecological assessment of the São Francisco Basin (Brazil) as part of an environmental baseline evaluation regarding the Brazilian potential for exploring its unconventional gas reserves. Eleven and thirteen samples of surface waters and groundwater were analyzed for gross alpha and beta using a gas flow proportional counter. A radiological background range was proposed using the ± 2 Median Absolute Deviation method. Using geoprocessing tools, the annual equivalent doses and lifetime cancer risk indexes were spatialized. Gross alpha and beta background thresholds in surface water ranged from 0.04-0.40 Bq L -1 to 0.17-0.46 Bq L - , respectively. Groundwater radiological background varies from 0.006-0.81 Bq L -1 to 0.06-0.72 Bq L -1 for gross alpha and beta, respectively. All environmental indexes are relatively higher in the south of the basin, probably a direct response to the local volcanic formations. Traçadal fault and local gas seepages might also influence the gross alpha and beta distribution. All samples have radiological indexes below the environmental thresholds, and should remain at acceptable levels with the development of the unconventional gas industry in Brazil.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: APHA – American Public Health Association. (2012). Standard methods for the examinations of water and wastewater: PART 7000 Radioactivity 7110 Gross Alpha and Gross Beta Radioactivity (Total, Suspended, and Dissolved). 22 ed. Washington, DC.
Agbalagba, E. O., Egarievwe, S. U., Odesiri-Eruteyan, E. A., & Drabo, M. L. (2021). Evaluation of gross alpha and gross beta radioactivity in crude oil polluted soil, sediment and water in the Niger Delta Region of Nigeria. Journal of Environmental Protection, 12(08), 526–546. https://doi.org/10.4236/jep.2021.128033. (PMID: 10.4236/jep.2021.128033)
Ajemigbitse, M. A., Cannon, F. S., & Warner, N. R. (2020). A rapid method to determine 226Ra concentrations in Marcellus Shale produced waters using liquid scintillation counting. Journal of Environmental Radioactivity, 220–221(May), 106300. https://doi.org/10.1016/j.jenvrad.2020.106300.
Al-Amir, S. M., Al-Hamarneh, I. F., Al-Abed, T., & Awadallah, M. (2012). Natural radioactivity in tap water and associated age-dependent dose and lifetime risk assessment in Amman. Jordan. Applied Radiation and Isotopes, 70(4), 692–698. https://doi.org/10.1016/j.apradiso.2011.12.002. (PMID: 10.1016/j.apradiso.2011.12.002)
Alkmim, F. F., & Martins-Neto, M. A. (2012). Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil. Marine and Petroleum Geology, 33(1), 127–139. https://doi.org/10.1016/j.marpetgeo.2011.08.011. (PMID: 10.1016/j.marpetgeo.2011.08.011)
Alomari, A. H., Saleh, M. A., Hashim, S., Alsayaheen, A., Abdelin, I., & Khalaf, R. B. (2019). Measurement of gross alpha and beta activity concentration in groundwater of Jordan: Groundwater quality, annual effective dose and lifetime risk assessment. Journal of Water and Health, 17(6), 957–970. https://doi.org/10.2166/wh.2019.158. (PMID: 10.2166/wh.2019.158)
Armstrong, F. E., & Heemstra, R. J. (1973). Radiation halos and hydrocarbon reservoirs: A review.
Arthur, M. A., & Cole, D. R. (2014). Unconventional hydrocarbon resources: Prospects and problems. Elements, 10(4), 257–264. https://doi.org/10.2113/gselements.10.4.257. (PMID: 10.2113/gselements.10.4.257)
Atipo, M., Olarinoye, O., & Awojoyogbe, B. (2020). Comparative analysis of NORM concentration in mineral soils and tailings from a tin-mine in Nigeria. Environmental Earth Sciences, 79(16), 1–17. https://doi.org/10.1007/s12665-020-09136-7. (PMID: 10.1007/s12665-020-09136-7)
Campos, J. E. G., & Dardenne, M. A. (1997). Estratigrafia E Sedimentação Da Bacia Sanfranciscana: Uma Revisão. Revista Brasileira de Geociências, 27(3), 269–282. https://doi.org/10.25249/0375-7536.1997269282.
Christel, L. G., & Novas, M. A. (2019). Incentivos económicos y conflictividad social. trayectorias disímiles del fracking en las provincias de Argentina. Revista de Reflexión y Análisis Político, 2(2), 491–525. https://dialnet.unirioja.es/servlet/articulo?codigo=6738279.
CODEMIG & CPRM. (2013). Mapa Geológico de Minas Gerais. Available at http://www.codemig.com.br/atuacao/mineracao/mapeamento-geologico/2013-mapa-geologico-de-minas-gerais/ (Accessed in 29, May, 2022).
Cowie, M., Mously, K., Fageeha, O., & Nassar, R. (2012). NORM management in the oil and gas industry. Annals of the ICRP, 41(3–4), 318–331. https://doi.org/10.1016/j.icrp.2012.06.008. (PMID: 10.1016/j.icrp.2012.06.008)
CPRM - Cândido, M., Beato, D., Fiume, B., Scudino, P., Carneiro, F., Nascimento, F., Coutinho, M., Almeida, C., Socorro, A., Santana, M., Ribeiro, R., & Cordeiro, B. (2019). Projeto Águas do Norte de Minas – PANM: Estudo da Disponibilidade Hídrica Subterrânea do Norte de Minas Gerais. Relatório de Integração. Serviço Geológico do Brasil (CPRM). p 1–222.
Craig, J., Thurow, J., Thusu, B., Whitham, A., Abutarruma, Y. (2009). Global Neoproterozoic petroleum systems : the emerging potential in North Africa. Geological Society, London, Special Publications, 236, 1–25. https://doi.org/10.1144/SP326.1.
de Camargo, T. R. M., de Merschmann, P. R., & C., Arroyo, E. V., & Szklo, A. (2014). Major challenges for developing unconventional gas in Brazil - Will water resources impede the development of the Country’s industry? Resources Policy, 41(1), 60–71. https://doi.org/10.1016/j.resourpol.2014.03.001. (PMID: 10.1016/j.resourpol.2014.03.001)
De-Paula Costa, G. T., Guerrante, I. C., Costa-de-Moura, J., & Amorim, F. C. (2018). Geochemical signature of NORM waste in Brazilian oil and gas industry. Journal of Environmental Radioactivity, 189(February), 202–206. https://doi.org/10.1016/j.jenvrad.2018.04.014. (PMID: 10.1016/j.jenvrad.2018.04.014)
Doyi, I., Essumang, D. K., Dampare, S., & Glover, E. T. (2016). Technologically enhanced naturally occurring radioactive materials (TENORM ) in the oil and gas industry : A review. Reviews of Environmental Contamination and Toxicology, 250. https://doi.org/10.1007/398.
de Rodrigues, A. S. L., & Nalini Júnior, H. A. (2009). Valores de background geoquímico e suas implicações em estudos ambientais. Revista Escola De Minas, 62(2), 155–165. https://doi.org/10.1590/s0370-44672009000200006. (PMID: 10.1590/s0370-44672009000200006)
Dung, T. T. T., Cappuyns, V., Swennen, R., Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Biotechnology, 12, 335–353. https://doi.org/10.1007/s11157-013-9315-1.
El Afifi, E. M., & Awwad, N. S. (2005). Characterization of the TE-NORM waste associated with oil and natural gas production in Abu Rudeis. Egypt. Journal of Environmental Radioactivity, 82, 7–19. https://doi.org/10.1016/j.jenvrad.2004.11.001. (PMID: 10.1016/j.jenvrad.2004.11.001)
Esterhuyse, S. (2017). Developing a groundwater vulnerability map for unconventional oil and gas extraction: A case study from South Africa. Environmental Earth Sciences, 76(17), 1–13. https://doi.org/10.1007/s12665-017-6961-6. (PMID: 10.1007/s12665-017-6961-6)
Estrada, J. M., & Bhamidimarri, R. (2016). A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel, 182, 292–303. https://doi.org/10.1016/j.fuel.2016.05.051. (PMID: 10.1016/j.fuel.2016.05.051)
FGV ENERGIA - Fundação Getúlio Vargas (2020). Doing business with the Brazilian onshore environment.
FGV ENERGIA - Fundação Getúlio Vargas (2021). O desenvolvimento da exploração de recursos não-convencionais no Brasil: Novas óticas de desenvolvimento regional. Rio de Janeiro.
Fonseca, R., Patinha, C., Barriga, F., & Morais, M. (2012). Role of the sediments of two tropical dam reservoirs in the flux of metallic elements to the water column. Water Science and Technology, 66(2), 254–266. https://doi.org/10.2166/wst.2012.169. (PMID: 10.2166/wst.2012.169)
Gijbels, I., & Hubert, M. (2009). 1. 07 Robust and nonparametric statistical methods. In Comprehensive Chemometrics (pp. 189–211). Leuven: Elsevier.
Humez, P., Kloppmann, W., Naumenko-de, M. O., & Mayer, B. (2021). Potential impacts of shale gas development on inorganic groundwater chemistry : Implications for environmental baseline assessment in shallow aquifers. Environmental Science & Technology, (July). https://doi.org/10.1021/acs.est.1c01172.
IBGE - Instituto Brasileiro de Geografia e Estatística. (2021). Nota sobre as Tábuas Completas de Mortalidade 2021 e a pandemia de Covid-19. Retrieved December 16, 2022, from https://www.ibge.gov.br/novo-portal-destaques/35600-nota-sobre-as-tabuas-completas-de-mortalidade-2021-e-a-pandemia-de-covid-19.html#:~:text=Para%20a%20popula%C3%A7%C3%A3o%20masculina%2C%20a,29%20de%20novembro%20daquele%20ano.
ICRP - International Commission on Radiological Protection. ICRP Publication. (1991). Recommendations of the international commission on radiological protection. ICRP publication 60. Ann. ICRP 21 (1–3).
Islam, M. R. (2014). Unconventional gas reservoirs: Evaluation, appraisal, and development. Unconventional gas reservoirs: Evaluation, appraisal, and development. London and Ontario: Elsevier. https://doi.org/10.1016/C2013-0-13422-8.
Jodłowski, P., Macuda, J., Nowak, J., & Nguyen Dinh, C. (2017). Radioactivity in wastes generated from shale gas exploration and production – North-Eastern Poland. Journal of Environmental Radioactivity, 175–176, 34–38. https://doi.org/10.1016/j.jenvrad.2017.04.006. (PMID: 10.1016/j.jenvrad.2017.04.006)
Karahan, G., TaşkIn, H., Bingöldag, N., Kapdan, E., & Yilmaz, Y. Z. (2018). Environmental impact assessment of natural radioactivity and heavy metals in drinking water around Akkuyu Nuclear Power Plant in Mersin Province. Turkish Journal of Chemistry, 42(3), 735–747. https://doi.org/10.3906/kim-1710-83. (PMID: 10.3906/kim-1710-83)
Katarina, H., Costa, D. M., Cintra, M., Pereira, E. G., & dos Santos, E. M. (2018). Regulatory framework of upstream and onshore unconventional gas in Brazil. Energy Law and Regulation in Brazil, 45–65. https://doi.org/10.1007/978-3-319-73456-9.
Khyade, V. B. (2016). Hydraulic fracturing; Environmental issue. World Scientific News, 40, 58–92.
King, G. E. (2012). Hydraulic Fracturing 101 : What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil W. Society of Petroleum Engineers Annual Technical Conference and Exhibition, 1–80.
Kobya, Y., TaşkIn, H., Yeşilkanat, C. M., Çevik, U., Karahan, G., & ÇakIr, B. (2015). Radioactivity survey and risk assessment study for drinking water in the Artvin Province, Turkey. Water, Air, and Soil Pollution, 226(3). https://doi.org/10.1007/s11270-015-2344-3.
Kücükömeroglu, B., Kurnaz, A., Keser, R., Korkmaz, F., Okumusoglu, N. T., Karahan, G., et al. (2008). Radioactivity in sediments and gross alpha-beta activities in surface water of Firtina River. Turkey. Environmental Geology, 55(7), 1483–1491. https://doi.org/10.1007/s00254-007-1098-7. (PMID: 10.1007/s00254-007-1098-7)
Lima, G. F. C., Ferreira, V. G., Duarte, J. C. de M., Lima, J. da S. D., & Fuccio, A. F. A. (2021). Geologia e sistemas petrolíferos da Bacia do São Francisco dentro do contexto das reservas não convencionais nas regiões dos rios Indaiá e Borrachudo. Ponta Grossa: Atena. https://doi.org/10.22533/at.ed.668210207.
Lima, J. da S. D., Ferreira, V. G., Duarte, J. de C. M., Lima, G. F. C., & de Carvalho-Filho, C. A. (2020). Projeto Gasbras : Proposta metodológica para Levantamento de baseline e análises de viabilidade da produção de gás não convencional em uma área de investigação na Bacia Do São Francisco – Minas Gerais. In III Simpósio da Bacia Hidrográfica do Rio São Francisco (pp. 1–8). Belo Horizonte.
Long, D. R. (1975). Radiometric surveying in hydrocarbon exploration. Symposium on Deep Drilling Frontiers in the Central Rocky Mountains.
Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background - Can we calculate it? Environmental Geology, 39(9), 990–1000. https://doi.org/10.1007/s002549900084. (PMID: 10.1007/s002549900084)
Matys Grygar, T., & Popelka, J. (2016). Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. Journal of Geochemical Exploration, 170, 39–57. https://doi.org/10.1016/j.gexplo.2016.08.003. (PMID: 10.1016/j.gexplo.2016.08.003)
Meng, Q., & Ashby, S. (2014). Distance: A critical aspect for environmental impact assessment of hydraulic fracking. Extractive Industries and Society, 1(2), 124–126. https://doi.org/10.1016/j.exis.2014.07.004. (PMID: 10.1016/j.exis.2014.07.004)
Mingote, R. M., Nogueira, R. A., & Da Costa, H. F. (2019). Gross alpha and beta activities in drinking water from Goiás state, Brazil. Brazilian Journal of Radiation Sciences, 7(3), 1–11. https://doi.org/10.15392/bjrs.v7i3.410.
MME., ME., EPE., & ANP., - Ministério de Minas e Energia. (2022). Poço Transparente: Mais conhecimento, mais gás para o Brasil. Online.
O’Brien, R. S., & Cooper, M. B. (1998). Technologically enhanced naturally occurring radioactive material (NORM): Pathway analysis and radiological impact. Applied Radiation and Isotopes, 49(3), 227–239. https://doi.org/10.1016/S0969-8043(97)00244-3. (PMID: 10.1016/S0969-8043(97)00244-3)
Okunola, O. J., Oladipo, M. O. A., Aker, T., & Popoola, O. B. (2020). Risk assessment of drinkable water sources using gross alpha and beta radioactivity levels and heavy metals. Heliyon, 6(8), e04668. https://doi.org/10.1016/j.heliyon.2020.e04668.
Prado, I. G., & Pompeu, P. S. (2014). Vertical and seasonal distribution of fish in Três Marias reservoir. Lake and Reservoir Management, 30(September), 393–404. https://doi.org/10.1080/10402381.2014.955221. (PMID: 10.1080/10402381.2014.955221)
Reimann, C., & Caritat, P. D. (2016). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.11.010. (PMID: 10.1016/j.scitotenv.2016.11.010)
Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. Science of the Total Environment, 346(1–3), 1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023. (PMID: 10.1016/j.scitotenv.2004.11.023)
Reimann, C., Filzmoser, P., Garrett, R., & Rudolf, D. (2008). Statistical data analysis explained: Applied environmental statistics with R. (J. Wiley, Ed.). England: John Wiley & Sons Ltd.
Reimann, C., & Garrett, R. G. (2005). Geochemical background — Concept and reality. 350, 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047.
Reis, H. L. S. (2011). Estratigrafia e tectônica da bacia do São Francisco na Zona de Emanações de gás natural do baixo Rio Indaiá (MG).
Reis, H. L. S. (2018). Gás natural. In A. C. Pedrosa-Soares, E. Voll, & E. C. Cunha (Eds.), Recursos minerais de Minas Gerais (pp. 1–39). Belo Horizonte: Companhia de Desenvolvimento de Minas Gerais (CODEMGE). http://recursomineralmg.codemge.com.br/wp-content/uploads/2018/10/GasNatural.pdf.
Reis, H. L. S., Barbosa, M. S. C., Alkmim, F. F. D., & Soares, A. C. P. (2011). Magnetometric and gamma spectrometric expression of southwestern São Francisco Basin, Serra Selada Quadrangle (1:100.000), Minas Gerais state. https://www.researchgate.net/publication/267654213.
Rindskopf, D., & Shiyko, M. (2010). Measures of dispersion, skewness and kurtosis. In International Encyclopedia of Education (pp. 267–273). New York: Elsevier. https://doi.org/10.1016/B978-0-08-044894-7.01344-0.
Salomão, G. N., Dall’Agnol, R., Sahoo, P. K., Angélica, R. S., de Medeiros Filho, C. A., Ferreira Júnior, J., da, S., et al. (2020). Geochemical mapping in stream sediments of the Carajás Mineral Province: Background values for the Itacaiúnas River watershed, Brazil. Applied Geochemistry, 118, 104608. https://doi.org/10.1016/j.apgeochem.2020.104608.
Sarvajayakesavalu, S., Lakshminarayanan, D., George, J., Magesh, S. B., Anilkumar, K. M., Brammanandhan, G. M., et al. (2018). Geographic information system mapping of gross alpha/beta activity concentrations in ground water samples from Karnataka, India: A preliminary study. Groundwater for Sustainable Development, 6, 164–168. https://doi.org/10.1016/j.gsd.2017.12.003. (PMID: 10.1016/j.gsd.2017.12.003)
Schubert, J. P., Rosenmeier, M. F., & Zatezalo, M. P. (2014). A review of NORM/TENORM in wastes and waters associated with Marcellus shale gas development and production. hale Energy Engineering 2014: Technical Challenges, Environmental Issues, and Public Policy, 492–501.
Shi, Y., Gao, W., Siqi, T., Li, Z., Zhang, J., Guan, R., et al. (2021). The gross α and β radioactivity levels of drinking water source in one oil industrial city in northeast China. Radiation Medicine and Protection, 2(2), 61–66. https://doi.org/10.1016/j.radmp.2021.04.005. (PMID: 10.1016/j.radmp.2021.04.005)
Soeder, D. J. (2021). Fracking and the environment: A scientific assessment of the environmental risks from hydraulic fracturing and fossil fuels. Fracking and the Environment. South Dakota: Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-59121-2. (PMID: 10.1007/978-3-030-59121-2)
Soeder, D. J., & Borglum, S. J. (2019). The fossil fuel revolution: Shale gas and tight oil. Elsevier.
Sohrabi, M. (1998). The state-of-the-art on worldwide studies in some environments with elevated naturally occurring radioactive materials (NORM). Applied Radiation and Isotopes, 49(3), 169–188. https://doi.org/10.1016/S0969-8043(97)00238-8. (PMID: 10.1016/S0969-8043(97)00238-8)
Todorović, N., Nikolov, J., Tenjović, B., Bikit, I., & Veskovic, M. (2012). Establishment of a method for measurement of gross alpha/beta activities in water from Vojvodina region. Radiation Measurements, 47(11–12), 1053–1059. https://doi.org/10.1016/j.radmeas.2012.09.009. (PMID: 10.1016/j.radmeas.2012.09.009)
UNSCEAR - United Nations Scientific Committee on the Effects of Atomic Radiations. (2000). Sources and effects of ionizing radiation. Report to the General Assembly. United Nations, New York.
Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science & Technology, 48, 8334–8348. https://doi.org/10.1021/es405118y.
Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134). https://doi.org/10.1126/science.1235009.
WHO – World Health Organization. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: WHO Library Cataloguing-in Publication Data NLM classification. WA 675.
Worrall, F., Wade, A. J., Davies, R. J., & Hart, A. (2019). Setting the baseline for shale gas – Establishing effective sentinels for water quality impacts of unconventional hydrocarbon development. Journal of Hydrology, 571(February), 516–527. https://doi.org/10.1016/j.jhydrol.2019.01.075. (PMID: 10.1016/j.jhydrol.2019.01.075)
Zikovsky, L. (2006). Alpha radioactivity in drinking water in Quebec, Canada. Journal of Environmental Radioactivity, 88, 306–309. https://doi.org/10.1016/j.jenvrad.2006.02.004. (PMID: 10.1016/j.jenvrad.2006.02.004)
فهرسة مساهمة: Keywords: Effective dose equivalent; Fracking; Hydraulic fracturing; Nonconventional hydrocarbons; Radiological risk in gas industry; Shale gas in Brazil
المشرفين على المادة: 0 (Natural Gas)
تواريخ الأحداث: Date Created: 20230522 Date Completed: 20230524 Latest Revision: 20230524
رمز التحديث: 20240514
DOI: 10.1007/s10661-023-11211-y
PMID: 37212929
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-023-11211-y