دورية أكاديمية

A Quantitative Systems Pharmacology Model Describing the Cellular Kinetic-Pharmacodynamic Relationship for a Live Biotherapeutic Product to Support Microbiome Drug Development.

التفاصيل البيبلوغرافية
العنوان: A Quantitative Systems Pharmacology Model Describing the Cellular Kinetic-Pharmacodynamic Relationship for a Live Biotherapeutic Product to Support Microbiome Drug Development.
المؤلفون: Renardy M; Applied BioMath LLC, Concord, Massachusetts, USA., Prokopienko AJ; Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA., Maxwell JR; Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA., Flusberg DA; Applied BioMath LLC, Concord, Massachusetts, USA., Makaryan S; Applied BioMath LLC, Concord, Massachusetts, USA., Selimkhanov J; Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA., Vakilynejad M; Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA., Subramanian K; Applied BioMath LLC, Concord, Massachusetts, USA., Wille L; Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA.
المصدر: Clinical pharmacology and therapeutics [Clin Pharmacol Ther] 2023 Sep; Vol. 114 (3), pp. 633-643. Date of Electronic Publication: 2023 Jun 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0372741 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1532-6535 (Electronic) Linking ISSN: 00099236 NLM ISO Abbreviation: Clin Pharmacol Ther Subsets: MEDLINE
أسماء مطبوعة: Publication: 2015- : Hoboken, NJ : Wiley
Original Publication: St. Louis : C.V. Mosby
مواضيع طبية MeSH: Vancomycin* , Microbiota*, Humans ; Kinetics ; Network Pharmacology ; Drug Development
مستخلص: Live biotherapeutic products (LBPs) are human microbiome therapies showing promise in the clinic for a range of diseases and conditions. Describing the kinetics and behavior of LBPs poses a unique modeling challenge because, unlike traditional therapies, LBPs can expand, contract, and colonize the host digestive tract. Here, we present a novel cellular kinetic-pharmacodynamic quantitative systems pharmacology model of an LBP. The model describes bacterial growth and competition, vancomycin effects, binding and unbinding to the epithelial surface, and production and clearance of butyrate as a therapeutic metabolite. The model is calibrated and validated to published data from healthy volunteers. Using the model, we simulate the impact of treatment dose, frequency, and duration as well as vancomycin pretreatment on butyrate production. This model enables model-informed drug development and can be used for future microbiome therapies to inform decision making around antibiotic pretreatment, dose selection, loading dose, and dosing duration.
(© 2023 Takeda Pharmaceuticals. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.)
References: Yadav, M. & Chauhan, N.S. Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol. Rep. 10, goab046 (2022).
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407-415 (2013).
Cammarota, G. et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 41, 835-843 (2015).
Costello, S.P. et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 321, 156-164 (2019).
Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218-1228 (2017).
Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102-109.e6 (2015).
Haifer, C. et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 7, 141-151 (2022).
Feuerstadt, P. et al. SER-109, an Oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220-229 (2022).
Henn, M.R. et al. A phase 1b safety study of SER-287, a spore-based microbiome therapeutic, for active mild to moderate ulcerative colitis. Gastroenterology 160, 115-127.e30 (2021).
Smith, B.J. et al. Strain-resolved analysis in a randomized trial of antibiotic pretreatment and maintenance dose delivery mode with fecal microbiota transplant for ulcerative colitis. Sci. Rep. 12, 5517 (2022).
Dsouza, M. et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe 30, 583-598.e8 (2022).
Modoux, M. et al. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes 14, 2105637 (2022).
Hu, M. et al. Short-chain fatty acids augment differentiation and function of human induced regulatory T cells. Int. J. Mol. Sci. 23, 5740-5757 (2022).
Zheng, L. et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of Claudin-2. J. Immunol. 199, 2976-2984 (2017).
Huda-Faujan, N. et al. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem. J. 4, 53-58 (2010).
Vernia, P., Gnaedinger, A., Hauck, W. & Breuer, R.I. Organic anions and the diarrhea of inflammatory bowel disease. Dig. Dis. Sci. 33, 1353-1358 (1988).
Lührs, H. et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37, 458-466 (2002).
Breuer, R.I. et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut 40, 485-491 (1997).
Wang, W. et al. Increased proportions of Bifidobacterium and the lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J. Clin. Microbiol. 52, 398-406 (2014).
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275-1283 (2014).
Singh, A.P., Shin, Y.G. & Shah, D.K. Application of pharmacokinetic-Pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm. Res. 32, 3508-3525 (2015).
Velkov, T., Bergen, P.J., Lora-Tamayo, J., Landersdorfer, C.B. & Li, J. PK/PD models in antibacterial development. Curr. Opin. Microbiol. 16, 573-579 (2013).
Agoram, B.M., Martin, S.W. & van der Graaf, P.H. The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov. Today 12, 1018-1024 (2007).
Liu, C. et al. Model-based cellular kinetic analysis of chimeric antigen receptor-T cells in humans. Clin. Pharmacol. Ther. 109, 716-727 (2021).
Qi, T., McGrath, K., Ranganathan, R., Dotti, G. & Cao, Y. Cellular kinetics: a clinical and computational review of CAR-T cell pharmacology. Adv. Drug Deliv. Rev. 188, 114421 (2022).
Chaudhury, A. et al. Chimeric antigen receptor T cell therapies: a review of cellular kinetic-Pharmacodynamic modeling approaches. J. Clin. Pharmacol. 60(Suppl 1), S147-S159 (2020).
Singh, A.P. et al. Development of a quantitative relationship between CAR-affinity, antigen abundance, tumor cell depletion and CAR-T cell expansion using a multiscale systems PK-PD model. MAbs 12, 1688616 (2020).
Magnúsdóttir, S. & Thiele, I. Modeling metabolism of the human gut microbiome. Curr. Opin. Biotechnol. 51, 90-96 (2018).
Bucci, V. & Xavier, J.B. Towards predictive models of the human gut microbiome. J. Mol. Biol. 426, 3907-3916 (2014).
Sen, P. & Orešič, M. Metabolic modeling of human gut microbiota on a genome scale: an overview. Metabolites 9, 22-37 (2019).
Karlsson, F.H., Nookaew, I., Petranovic, D. & Nielsen, J. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol. 29, 251-258 (2011).
Zheng, B. et al. A systems pharmacology model for gene therapy in sickle cell disease. CPT Pharmacometrics Syst. Pharmacol. 10, 696-708 (2021).
Thabit, A.K. & Nicolau, D.P. Impact of vancomycin faecal concentrations on clinical and microbiological outcomes in Clostridium difficile infection. Int. J. Antimicrob. Agents 46, 205-208 (2015).
Gonzales, M. et al. Faecal pharmacokinetics of orally administered vancomycin in patients with suspected Clostridium difficile infection. BMC Infect. Dis. 10, 363 (2010).
Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect. Dis. 42(Suppl 1), S35-S39 (2006).
Moellering, R.C. Jr., Krogstad, D.J. & Greenblatt, D.J. Pharmacokinetics of vancomycin in normal subjects and in patients with reduced renal function. Rev. Infect. Dis. 3(suppl), S230-S235 (1981).
Gonçalves, P. & Martel, F. Regulation of colonic epithelial butyrate transport: focus on colorectal cancer. Porto Biomed. J. 1, 83-91 (2016).
MATLAB version 9.10.0.1613233 (R2021a) (The MathWorks, Natick, Massachusetts, 2021).
Donaldson, G.P., Lee, S.M. & Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20-32 (2016).
Cummings, J.H., Bingham, S.A., Heaton, K.W. & Eastwood, M.A. Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 103, 1783-1789 (1992).
Song, B.K., Cho, K.O., Jo, Y., Oh, J.W. & Kim, Y.S. Colon transit time according to physical activity level in adults. J. Neurogastroenterol. Motil. 18, 64-69 (2012).
Garey, K.W. et al. A randomized, double-blind, placebo-controlled, single and multiple ascending dose phase 1 study to determine the safety, pharmacokinetics and food and faecal microbiome effects of ibezapolstat administered orally to healthy subjects. J. Antimicrob. Chemother. 75, 3635-3643 (2020).
Zhang, M. et al. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS One 9, e109146 (2014).
Vanysek, P. Ionic Conductivity and Diffusion at Infinite Dilution. 5-92 (CRC Hand Book of Chemistry and Physics, Boca Raton, FL, 1993). https://ci.nii.ac.jp/naid/10025205578/.
Smith, G.W., Wiggins, P.M., Lee, S.P. & Tasman-Jones, C. Diffusion of butyrate through pig colonic mucus in vitro. Clin. Sci. 70, 271-276 (1986).
Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
Rogers, K.V., Martin, S.W., Bhattacharya, I., Singh, R.S.P. & Nayak, S. A dynamic quantitative systems pharmacology model of inflammatory bowel disease: part 1-model framework. Clin. Transl. Sci. 14, 239-248 (2020).
Hounnou, G., Destrieux, C., Desmé, J., Bertrand, P. & Velut, S. Anatomical study of the length of the human intestine. Surg. Radiol. Anat. 24, 290-294 (2002).
Nguyen, H. et al. Deficient Pms2, ERCC1, Ku86, CcOI in field defects during progression to colon cancer. J. Vis. Exp. 41, e1931-1936 (2010). https://doi.org/10.3791/1931.
Das, R. et al. A quantitative systems pharmacology model of colonic motility with applications in drug development. J. Pharmacokinet. Pharmacodyn. 46, 485-498 (2019).
Miller, A.A., Kurschel, E., Osieka, R. & Schmidt, C.G. Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur. J. Cancer Clin. Oncol. 23, 1283-1287 (1987).
Reijnders, D. et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 24, 63-74 (2016).
Jones, R.B. et al. Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci. Rep. 8, 4139 (2018).
Sun, S. et al. On the robustness of inference of association with the gut microbiota in stool, rectal swab and mucosal tissue samples. Sci. Rep. 11, 14828 (2021).
McGovern, B.H. et al. SER-109, an investigational microbiome drug to reduce recurrence after Clostridioides difficile infection: lessons learned from a phase 2 trial. Clin. Infect. Dis. 72, 2132-2140 (2021).
Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255-1265 (2018).
Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. & Brummer, R.J. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104-119 (2008).
المشرفين على المادة: 6Q205EH1VU (Vancomycin)
تواريخ الأحداث: Date Created: 20230523 Date Completed: 20230821 Latest Revision: 20230826
رمز التحديث: 20240628
DOI: 10.1002/cpt.2952
PMID: 37218407
قاعدة البيانات: MEDLINE
الوصف
تدمد:1532-6535
DOI:10.1002/cpt.2952