دورية أكاديمية

Transcriptional profiling of long noncoding RNAs associated with flower color formation in Ipomoea nil.

التفاصيل البيبلوغرافية
العنوان: Transcriptional profiling of long noncoding RNAs associated with flower color formation in Ipomoea nil.
المؤلفون: Zhou H; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China., Yan R; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China., He H; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China., Wei X; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China., Liu S; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China., Guo B; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China., Zhang Y; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Basic Medicine, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China., Liu X; Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China., Rahman SU; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China., Zhou C; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China. zhouchao@ctgu.edu.cn., He Z; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China. zhq_he@163.com.
المصدر: Planta [Planta] 2023 May 23; Vol. 258 (1), pp. 6. Date of Electronic Publication: 2023 May 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag [etc.]
مواضيع طبية MeSH: RNA, Long Noncoding* , Ipomoea nil*, Animals ; Exons ; Flowers ; RNA, Messenger ; Mammals
مستخلص: Main Conclusion: LncRNAs regulate flower color formation in Ipomoea nil via vacuolar pH, TCA cycle, and oxidative phosphorylation pathways. The significance of long noncoding RNA (lncRNA) in diverse biological processes is crucial in plant kingdoms. Although study on lncRNAs has been extensive in mammals and model plants, lncRNAs have not been identified in Ipomoea nil (I. nil). In this study, we employed whole transcriptome strand-specific RNA sequencing to identify 11,203 expressed lncRNA candidates, including 961 known lncRNA and 10,242 novel lncRNA in the I. nil genome. These lncRNAs in I. nil had fewer exons and were generally shorter in length compared to mRNA genes. Totally, 1141 different expression lncRNAs (DELs) were significantly identified between white and red flowers. The functional analysis indicated that lncRNA-targeted genes were enriched in the TCA cycle, photosynthesis, and oxidative phosphorylation-related pathway, which was also found in differentially expressed genes (DEGs) functional enrichments. LncRNAs can regulate transcriptional levels through cis- or trans-acting mechanisms. LncRNA cis-targeted genes were significantly enriched in potassium and lysosome. For trans-lncRNA, two energy metabolism pathways, TCA cycles and oxidative phosphorylation, were identified from positive association pairs of trans-lncRNA and mRNA. This research advances our understanding of lncRNAs and their role in flower color development, providing valuable insights for future selective breeding of I. nil.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Berry S, Dean C (2015) Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83(1):133–148. (PMID: 25929799469132110.1111/tpj.12869)
Chekanova JA, Gregory BD, Reverdatto SV et al (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131(7):1340–1353. (PMID: 1816004210.1016/j.cell.2007.10.056)
Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470. (PMID: 857859010.1016/S0968-0004(00)89102-1)
Chopra S, Hoshino A, Boddu J, Iida S (2006) Flavonoid pigments as tools in molecular genetics. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 147–173. (PMID: 10.1007/978-0-387-28822-2_6)
Cui J, Luan Y, Jiang N, Bao H, Meng J (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89(3):577–589. (PMID: 2780196610.1111/tpj.13408)
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. (PMID: 22955988343149310.1101/gr.132159.111)
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AHJCR (2014) Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 6(1):32–43. (PMID: 2438874610.1016/j.celrep.2013.12.009)
Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21. (PMID: 2429653510.1038/nrg3606)
Feng D, Li Q, Yu H, Kong L, Du SJ (2018) Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci Rep 8(1):1–10.
Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10(1):1–17. (PMID: 10.1186/1476-4598-10-38)
Heo JB, Lee YS (2015) Molecular functions of long noncoding transcripts in plants. J Plant Biol 58(6):361–365. (PMID: 10.1007/s12374-015-0476-z)
Iida S, Morita Y, Choi JD, Park KI, Hoshino A (2004) Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv Biophys 38:141–159. (PMID: 1549333210.1016/S0065-227X(04)80136-9)
Jain A, Tuteja G (2019) TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics 35(11):1966–1967. (PMID: 3034648810.1093/bioinformatics/bty890)
Jin J, Liu J, Wang H, Wong L, Chua NH (2013) PLncDB: plant long non-coding RNA database. Bioinformatics 29(8):1068–1071. (PMID: 23476021362481310.1093/bioinformatics/btt107)
Kapranov P, Cheng J, Dike S et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488. (PMID: 1751032510.1126/science.1138341)
Karlik E (2021) Role of long noncoding RNAs during stress in cereal crops. In: Upadhyay SK (ed) Long noncoding RNAs in plants. Elsevier, pp 107–131. (PMID: 10.1016/B978-0-12-821452-7.00008-8)
Kim DH, Sung S (2017) Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell 40(3):302–312. (PMID: 28132848530362410.1016/j.devcel.2016.12.021)
Li D, Shao F, Lu S (2015) Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta 241(5):1131–1143. (PMID: 2560100010.1007/s00425-015-2246-z)
Li S, Yamada M, Han X, Ohler U, Benfey PN (2016) High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell 39(4):508–522. (PMID: 27840108512553610.1016/j.devcel.2016.10.012)
Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24(11):4333–4345. (PMID: 23136377353183710.1105/tpc.112.102855)
Liu S, Sun Z, Xu M (2018) Identification and characterization of long non-coding RNAs involved in the formation and development of poplar adventitious roots. Ind Crops Prod 118:334–346. (PMID: 10.1016/j.indcrop.2018.03.071)
Lv Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, Peng Z, Zhao H (2016) Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics 17(1):1–15. (PMID: 10.1186/s12864-016-2650-1)
Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):924–933. (PMID: 411173210.4161/rna.24604)
Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18(1):1–13. (PMID: 10.1186/s13059-017-1348-2)
Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C (2014) Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 54(1):156–165. (PMID: 24725596398888510.1016/j.molcel.2014.03.026)
Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15(6):394–408. (PMID: 2480512010.1038/nrg3683)
Morita Y, Hoshino A (2018) Recent advances in flower color variation and patterning of Japanese morning glory and petunia. Breed Sci 68(1):128–138. (PMID: 29681755590398110.1270/jsbbs.17107)
Nam JW, Bartel DP (2012) Long noncoding RNAs in C. elegans. Genome Res 22(12):2529–2540. (PMID: 22707570351468210.1101/gr.140475.112)
Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579–584. (PMID: 2369836010.1038/nature12211)
Park YJ, Park SY, ValanArasu M, Al-Dhabi NA, Ahn HG, Kim JK, Park SU (2017) Accumulation of carotenoids and metabolic profiling in different cultivars of Tagetes flowers. Molecules 22(2):313. (PMID: 28218705615589410.3390/molecules22020313)
Qiao Q, Wu C, Cheng TT, Yan Y, Zhang L, Wan YL, Wang JW, Liu QZ, Feng Z, Liu Y (2022) Comparative analysis of the metabolome and transcriptome between the green and yellow-green regions of variegated leaves in a mutant variety of the tree species Pteroceltis tatarinowii. Int J Mol Sci 23(9):4950. (PMID: 35563341910167910.3390/ijms23094950)
Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18(5):1274–1291. (PMID: 16603655145686610.1105/tpc.105.034041)
Spelt C, Quattrocchio F, Mol J, Koes R (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14(9):2121–2135. (PMID: 1221551015076010.1105/tpc.003772)
Sun M, Kraus WL (2015) From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 36(1):25–64. (PMID: 2542678010.1210/er.2014-1034)
Tian J, Song Y, Du Q, Yang X, Ci D, Chen J, Xie J, Li B, Zhang D (2016) Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J Exp Bot 67(8):2467–2482. (PMID: 2691279910.1093/jxb/erw057)
Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550. (PMID: 22196729337635610.1016/j.cell.2011.11.055)
Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19(9):535–548. (PMID: 29795125645196410.1038/s41576-018-0017-y)
Vandenbussche M, Chambrier P, Rodrigues Bento S, Morel P (2016) Petunia, your next supermodel? Front Plant Sci 7:72. (PMID: 26870078473571110.3389/fpls.2016.00072)
Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H + P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10(12):1456–1462. (PMID: 1899778710.1038/ncb1805)
Verweij W, Spelt CE, Bliek M, de Vries M, Wit N, Faraco M, Koes R, Quattrocchio FM (2016) Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis. Plant Cell 28(3):786–803. (PMID: 26977085482600410.1105/tpc.15.00608)
Wang HV, Chekanova JA (2017) Long noncoding RNAs in plants. Adv Exp Med Biol 1008:133–154. (PMID: 28815539668922910.1007/978-981-10-5203-3_5)
Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24(3):444–453. (PMID: 24402519394110910.1101/gr.165555.113)
Wang X, Ai G, Zhang C, Cui L, Wang J, Li H, Zhang J, Ye Z (2016) Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytol 209(4):1442–1455. (PMID: 2649419210.1111/nph.13718)
Wang D, Qu Z, Yang L, Zhang Q, Liu ZH, Do T, Adelson DL, Wang ZY, Searle I, Zhu JK (2017) Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant J 90(1):133–146. (PMID: 28106309551441610.1111/tpj.13481)
Wang L, Xia X, Jiang H, Lu Z, Cui J, Cao F, Jin B (2018) Genome-wide identification and characterization of novel lncRNAs in Ginkgo biloba. Trees 32(5):1429–1442. (PMID: 10.1007/s00468-018-1724-x)
Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135(4):635–648. (PMID: 19013275260279810.1016/j.cell.2008.09.035)
Wu X, Shi T, Iqbal S, Zhang Y, Liu L, Gao Z (2019) Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume. BMC Plant Biol 19(1):1–17. (PMID: 10.1186/s12870-019-1672-7)
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):E104. (PMID: 1502440935066710.1371/journal.pbio.0020104)
Ye X, Wang S, Zhao X, Gao N, Wang Y, Yang Y, Wu E, Jiang C, Cheng Y, Wu W, Liu S (2022) Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. Plant J 110(4):978–993. (PMID: 3521810010.1111/tpj.15714)
Yu T, Tzeng DTW, Li R, Chen J, Zhong S, Fu D, Zhu B, Luo Y, Zhu H (2019) Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis. Ann Bot 123(3):469–482. (PMID: 3037603610.1093/aob/mcy178)
Yuan J, Zhang Y, Dong J, Sun Y, Lim BL, Liu D, Lu ZJ (2016) Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana. BMC Genomics 17(1):1–16. (PMID: 10.1186/s12864-016-2929-2)
Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15(12):1–16. (PMID: 10.1186/s13059-014-0512-1)
Zhao DQ, Wei MR, Liu D, Tao J (2016) Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony. Plant Physiol Biochem 102:97–106. (PMID: 2692216210.1016/j.plaphy.2016.02.023)
Zheng X, Zhu J, Kapoor A, Zhu JK (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26(6):1691–1701. (PMID: 182937210.1038/sj.emboj.7601603)
Zhou C, Zhou H, Ma X, Yang H, Wang P, Wang G, Zheng L, Zhang Y, Liu X (2021) Genome-wide identification and characterization of main histone modifications in sorghum decipher regulatory mechanisms involved by mRNA and long noncoding RNA genes. J Agric Food Chem 69(7):2337–2347. (PMID: 3355585310.1021/acs.jafc.0c07035)
Zhu J, Fu H, Wu Y, Zheng X (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 56(10):876–885. (PMID: 2409168410.1007/s11427-013-4553-6)
Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299(5607):716–719. (PMID: 1252225810.1126/science.1079695)
معلومات مُعتمدة: WDCM2022005 Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research
فهرسة مساهمة: Keywords: Energy metabolism; Flower color formation; Functional analysis; LncRNA; Transcriptome
المشرفين على المادة: 0 (RNA, Long Noncoding)
0 (RNA, Messenger)
تواريخ الأحداث: Date Created: 20230523 Date Completed: 20230525 Latest Revision: 20230628
رمز التحديث: 20231215
DOI: 10.1007/s00425-023-04142-y
PMID: 37219701
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2048
DOI:10.1007/s00425-023-04142-y