دورية أكاديمية

Thermal exchanges, physiological responses and productive performance of Guinea Fowl (Numidia meleagris) subjected to different air temperatures.

التفاصيل البيبلوغرافية
العنوان: Thermal exchanges, physiological responses and productive performance of Guinea Fowl (Numidia meleagris) subjected to different air temperatures.
المؤلفون: Marques JI; Chapadinha Science Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil. jordanio.marques@ufma.br., Leite PG; Chapadinha Science Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil., Furtado DA; Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil., de Oliveira AG; Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil., Cunha BB; Leonardo da Vinci University Center, Chapadinha, Maranhão, Brazil., de Melo DF; Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil., de Morais FTL; Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil.
المصدر: International journal of biometeorology [Int J Biometeorol] 2023 Jul; Vol. 67 (7), pp. 1237-1249. Date of Electronic Publication: 2023 May 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: United States NLM ID: 0374716 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1254 (Electronic) Linking ISSN: 00207128 NLM ISO Abbreviation: Int J Biometeorol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Springer Verlag
Original Publication: Leiden.
مواضيع طبية MeSH: Hot Temperature* , Body Temperature Regulation*, Animals ; Temperature ; Turkeys ; Chickens/physiology
مستخلص: The objective of this research was to evaluate the thermal exchanges, physiological responses, productive performance and carcass yield of Guinea Fowl confined under thermoneutral conditions and under thermal stress. For the experiment, 96 animals were confined in 8 experimental boxes of 1 m 2 of area, each, divided in equal numbers and placed inside two distinct climatic chambers, where the birds were distributed in a completely randomized design, with two treatments (air temperatures of 26 and 32 °C, respectively). For the collection of physiological responses and carcass yield 16 birds were evaluated and for the collection of data on feed and water consumption and productive responses, 48 birds per treatment were evaluated. The environmental variables (air temperature (AT), air relative humidity and wind speed), temperature and humidity index (THI), heat exchanges, physiological responses (respiratory rate, surface temperature, cloacal temperature and eyeball temperature), feed (FC) and water (WC) consumption and production responses (weight gain, feed conversion index and carcass yield) of the birds were evaluated. With the elevation of the AT, it could be noticed that the THI went from a thermal comfort condition to an emergency condition, where the birds lost part of their feathers, increased all physiological responses evaluated, and consequently, reduced by 53.5% the amount of heat dissipated in the sensible form and increased by 82.7% the heat losses in the latent form, increasing also the WC. ATs of up to 32 °C did not significantly affect the productive performance and carcass yield of the guinea fowl.
(© 2023. The Author(s) under exclusive licence to International Society of Biometeorology.)
References: ABPA. Brazilian Animal Protein Association (2018) Annual Report.: http://abpa-br.com.br/storage/files/relatorio-anual-2018.pdf . Accessed 26 August 2021.
Arruda AS, Marques JI, Leite PG, Furtado DA (2021) Productive and hematologic responses of country poultry subjected to different housing densities and water salinity levels. Poult Sci 100:1–10. https://doi.org/10.1016/j.psj.2021.101070. (PMID: 10.1016/j.psj.2021.101070)
Baracho MS, Nääs IA, Lima NDS, Cordeiro AFS, Moura DJ (2019) Factors Affecting Broiler Production: A Meta-Analysis. Braz J Poultry Sci 21:1–9. https://doi.org/10.1590/1806-9061-2019-1052. (PMID: 10.1590/1806-9061-2019-1052)
El-Deeb MA, Sharara HH, Makled MN (2000) Enhance calcium and phosphorus utilization by enzyme phytase supplemented to broiler diet contained rice bran. Egypt Poult Sci 20:545–566.
Ferreira EB, Cavalcanti PP, Nogueira DA (2013) ExpDes.pt: Experimental Designs pacakge (Portuguese). R package version 1.1.2.
Flock DK, Laughlin KF, Bentley J (2005) Minimizing losses in poultry breeding and production: How breeding companies contribute to poultry welfare. World’s Poult Sci J 61:227–237. https://doi.org/10.1079/WPS200560. (PMID: 10.1079/WPS200560)
Frank W, Nelson GL (1967) Nonevaporative convective heat transfer from the surface of a bovine. Transactions of the ASABE 10:733–0737. https://doi.org/10.13031/2013.39773. (PMID: 10.13031/2013.39773)
Frumkin R, Pinshow B, Weinstein Y (1986) Metabolic heat production and evaporative heat loss in desert phasianids: chukar and sand partridge. Physiol Zoology 6:592–605. (PMID: 10.1086/physzool.59.6.30158607)
Havenstein GB, Ferket PR, Qureshi MA (2003) Growth, livability and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 82:1500–1508. https://doi.org/10.1093/ps/82.10.1500. (PMID: 10.1093/ps/82.10.1500)
Hellickson MA, Walker JN (1983) Ventilation of Agricultural Structures. St. Joseph: ASABE, 23.
Hutchinson JCD (1954) Evaporative cooling in fowls. J Agric Sci 45:48–59. https://doi.org/10.1017/S0021859600045780. (PMID: 10.1017/S0021859600045780)
Khan RU, Naz S, Nikousefat Z, Tufarelli V, Javdani M, Rana N, Laudadio V (2011) Effect of vitamin E in heat-stressed poultry. World’s Poult Sci J 67:469–478. https://doi.org/10.1017/S0043933911000511. (PMID: 10.1017/S0043933911000511)
Khan RU, Naz S, Ullah H, Ullah Q, Laudadio V, Qudratullah BG, Tufarelli V (2021) Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim Biotechnol 32:1–10. https://doi.org/10.1080/10495398.2021.1972005. (PMID: 10.1080/10495398.2021.1972005)
Lara LJ, Rostagno MH (2013) Impact of heat stress on poultry production. Animals 3:356–369. https://doi.org/10.3390/ani3020356. (PMID: 10.3390/ani3020356)
Li S, Gebremedhin KG, Lee CN, Collier RJ (2009) Evaluation of Thermal Stress Indices for Cattle. ASABE, St. Joseph, MI, 2009 Reno, Nevada, June 21-June 24, 2009. https://doi.org/10.13031/2013.27441.
Loyau T, Berri C, Bedrani L, Métayer-Coustard S, Praud C, Duclos MJ, Tesseraud S, Rideau N, Everaert N, Yahav S, Mignon-Grasteau S, Collin A (2013) Thermal manipulation of the embryo modifies the physiology and body composition of broiler chickens reared in floor pens without affecting breast meat processing quality. J Anim Sci 8:3674–3685. https://doi.org/10.2527/jas.2013-6445. (PMID: 10.2527/jas.2013-6445)
Macari M, Furlan RL, Gonzales E (2002) Fisiologia aviária aplicada a frangos de corte. 2nd ed. Jaboticabal: FUNEP/UNESP. 375.
Marques JI, Lopes Neto JP, Nascimento JWB, Talieri IC, Medeiros GR, Furtado DA (2018) Pupillary dilation a termal stress indicator in boer crossbred goats maintained in a climate chamber. Small Rumin Res 158:26–29. https://doi.org/10.1016/j.smallrumres.2017.11.013. (PMID: 10.1016/j.smallrumres.2017.11.013)
Marques JI, Leite PG, Furtado DA, Oliveira AG (2021) Evaluation of Heat Stress Through Temperature and Pupillary Dilatation of the Guinea Fowl (NumidaMeleagris) in a Controlled Environment. Braz J Poultry Sci 23:1–6. https://doi.org/10.1590/1806-9061-2020-1409. (PMID: 10.1590/1806-9061-2020-1409)
McArthur AJ (1987) Thermal interaction between animal and microclimate: a comprehensive model. J Theor Biol 126:203–238. https://doi.org/10.1016/S0022-5193(87)80229-1. (PMID: 10.1016/S0022-5193(87)80229-1)
Mitchell HH (1930) The surface area of single comb white leghorn chickens. J Nutrit 2:443–449. https://doi.org/10.1093/jn/2.5.443. (PMID: 10.1093/jn/2.5.443)
Nahashon SN, Adefope N, Amenyenu A, Tyus J, Wright D (2009) The effect of floor density on growth performance and carcass characteristics of French guinea broilers. Poult Sci 88:2461–2467. https://doi.org/10.3382/ps.2008-00514. (PMID: 10.3382/ps.2008-00514)
NRC. National Research Council (1994) Nutrient Requirements of Poultry (9th, rev. National Academy Press, Washington, DC.
Oliveira RFM, Donzele JL, Abreu MLT, Ferreira RA, Vaz RGMV, Cella OS (2006) Efeitos da temperatura e da umidade relativa sobre o desempenho e o rendimento de cortes nobre de frangos de corte de 1 a 49 dias de idade. Rev Bras Zootec 35:797–803. https://doi.org/10.1590/S1516-35982006000300023. (PMID: 10.1590/S1516-35982006000300023)
R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ribeiro NL, Costa RG, Filho ECP, Ribeiro MN, Bozzi R (2018) Effects of the dry and the rainy season on endocrine and physiologic profiles of goats in the Brazilian semi-arid region. Ital J Anim Sci 17:454–461. https://doi.org/10.1080/1828051X.2017.1393320. (PMID: 10.1080/1828051X.2017.1393320)
Richards SA (1971) The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. J Physiol 216:1–10. https://doi.org/10.1113/jphysiol.1971.sp009505. (PMID: 10.1113/jphysiol.1971.sp009505)
Rizzo M, Arfuso F, Alberghina D, Giudice E, Gianesella M, Piccione G (2017) Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology. J Therm Biol 69:64–68. https://doi.org/10.1016/j.jtherbio.2017.06.007. (PMID: 10.1016/j.jtherbio.2017.06.007)
Roushdy EM, Zaglool AW, El-Tarabany MS (2018) Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. J Therm Biol 74:337–343. https://doi.org/10.1016/j.jtherbio.2018.04.009. (PMID: 10.1016/j.jtherbio.2018.04.009)
Santos AL, Sakomura NK, Freitas ER, Fortes MLS, Carrilho ENVM, Fernandes JBK (2005) Estudo do Crescimento, Desempenho, Rendimento de Carcaça e Qualidade de Carne de Três Linhagens de Frango de Corte. Braz J Anim Sci 34:1589–1598. https://doi.org/10.1590/S1516-35982005000500020. (PMID: 10.1590/S1516-35982005000500020)
Settar P, Yalcin S, Turkmut L, Ozkan S, Cahanar A (1999) Season by genotype interaction related to broiler growth rate and heat tolerance. Poult Sci 78:1353–1358. https://doi.org/10.1093/ps/78.10.1353. (PMID: 10.1093/ps/78.10.1353)
Silva RG (2000) A heat balance model for cattle in tropical environments. Braz J Anim Sci 29:1244–1252. https://doi.org/10.1590/S1516-35982000000400039. (PMID: 10.1590/S1516-35982000000400039)
Sinkalu VO, Ayo JO, Adelaiye AB, Hambolu JO (2015) Ameliorative effects of melatonin administration and photoperiods on diurnal fluctuations in cloacal temperature of Marshall broiler chickens during the hot dry season. Int J Biometeorol 59:79–87. https://doi.org/10.1007/s00484-014-0826-4. (PMID: 10.1007/s00484-014-0826-4)
Sverdlova NS, Lambertz M, Witzel U, Perry SF (2012) Boundary Conditions for Heat Transfer and Evaporative Cooling in the Trachea and Air Sac System of the Domestic Fowl: A TwoDimensional CFD Analysis. PLoS ONE 7:1–9. https://doi.org/10.1371/journal.pone.0045315. (PMID: 10.1371/journal.pone.0045315)
Tao X, Xin H (2003) Acute synergistic effects of air temperature, humidity, and velocity on homeostasis of market-size broiler. Trans Am Soc Agric Eng 46:491–497. https://doi.org/10.13031/2013.12971. (PMID: 10.13031/2013.12971)
Turnpenny JR, McArthur AJ, Clark JA, Wathes CM (2000) Thermal balance of livestock: 1. A Parsimonious Model Agric for Meteorol 101:15–27. https://doi.org/10.1016/S0168-1923(99)00159-8. (PMID: 10.1016/S0168-1923(99)00159-8)
Wolf BO, Walsberg GE (2015) The Role of the Plumage in Heat Transfer Processes of Birds. Amer Zool 40:575–584. https://doi.org/10.1093/icb/40.4.575. (PMID: 10.1093/icb/40.4.575)
Zaglool AW, Roushdy EM, El-Tarabany MS (2019) Impact of strain and duration of thermal stress on carcass yield, metabolic hormones, immunological indices and the expression of HSP90 and Myogenin genes in broilers. Res Vet Sci 12:193–199. https://doi.org/10.1016/j.rvsc.2018.11.027. (PMID: 10.1016/j.rvsc.2018.11.027)
فهرسة مساهمة: Keywords: Alternative poultry farming; Broiler poultry; Heat stress; Poultry confinement
تواريخ الأحداث: Date Created: 20230523 Date Completed: 20230710 Latest Revision: 20230718
رمز التحديث: 20231215
DOI: 10.1007/s00484-023-02492-6
PMID: 37219759
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1254
DOI:10.1007/s00484-023-02492-6