دورية أكاديمية

In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation.

التفاصيل البيبلوغرافية
العنوان: In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation.
المؤلفون: Liu C; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China., Guo P; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China., Lu YR; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China., Zhu YL; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China., Ran XY; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China., Wang BJ; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China., Zhang JH; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China. zjh19861202@126.com., Xie SM; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China. xieshengming_2006@163.com., Yuan LM; Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China.
المصدر: Mikrochimica acta [Mikrochim Acta] 2023 May 24; Vol. 190 (6), pp. 238. Date of Electronic Publication: 2023 May 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Wien ; New York : Springer-Verlag.
مستخلص: The manufacturing of chiral covalent triazine framework core-shell microspheres CC-MP CCTF@SiO 2 composite is reported as stationary phase for HPLC enantioseparation. The CC-MP CCTF@SiO 2 core-shell microspheres were prepared by immobilizing chiral COF CC-MP CCTF constructed using cyanuric chloride and (S)-2-methylpiperazine on the surface of activated SiO 2 through an in-situ growth approach. Various racemates as analytes were separated on the CC-MP CCTF@SiO 2 -packed column. The experimental results indicate that 19 pairs of enantiomers were well separated on the CC-MP CCTF@SiO 2 -packed column, including alcohols, phenols, amines, ketones, and organic acids. Among them, there are 17 pairs of enantiomers that can achieve baseline separation with good peak shapes. Their resolution values on this chiral column are between 0.4 and 5.61. The influences of analyte mass, column temperature, and composition of the mobile phase on the resolution of enantiomers were studied. In addition, the chiral resolution ability of CC-MP CCTF@SiO 2 -packed column was compared with the commercial chiral chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some CCOF@SiO 2 chiral columns (β-CD-COF@SiO 2 , CTpBD@SiO 2 , and MDI-β-CD-modified COF@SiO 2 ). The CC-MP CCTF@SiO 2 -packed column exhibited some unique advantages and can complement these chiral columns in chiral separations. The research results show that the CC-MP CCTF@SiO 2 chiral column offered high column efficiency (e.g., 17680 plates m -1 for ethyl mandelate), low column backpressure (5-9 bar), high enantioselectivity, and excellent chiral resolution ability for HPLC enantioseparation with good stability and reproducibility. The relative standard deviations (RSD) (n = 5) of the retention time, and peak areas by repeated separation of ethyl mandelate are 0.23% and 0.67%, respectively. It demonstrates that the CC-MP CCTF@SiO 2 core-shell microsphere composite has great potential in enantiomeric separation by HPLC.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Kumar N, Sharma U, Singh C, Singh B (2012) Thalidomide: chemistry, therapeutic potential and oxidative stress induced teratogenicity. Curr Top Med Chem 12(13):1436–1455. https://doi.org/10.2174/156802612801784407. (PMID: 10.2174/15680261280178440722650376)
Surivet JP, Vatèle JM (1999) Total synthesis of antitumor Goniothalamus styryllactones. Tetrahedron 55(45):13011–13028. https://doi.org/10.1016/S0040-4020(99)00794-2. (PMID: 10.1016/S0040-4020(99)00794-2)
Nie J, Wang YG, Gao XF, OuYang XK, Yang LY, Yu D, Wu WJ, Xu HP (2016) Pharmacokinetic study of ofloxacin enantiomers in Pagrosomus major by chiral HPLC. Biomed Chromatogr 30:426–431. https://doi.org/10.1002/bmc.3565. (PMID: 10.1002/bmc.356526179954)
Awadallah B, Schmidt PC, Wahl MA (2003) Quantitation of the enantiomers of ofloxacin by capillary electrophoresis in the parts per billion concentration range for in vitro drug absorption studies. Chromatogr A 988:135–143. https://doi.org/10.1016/S0021-9673(02)02015-0. (PMID: 10.1016/S0021-9673(02)02015-0)
Fuchs I, Fechler N, Antonietti M, Mastai Y (2016) Enantioselective nanoporous carbon based on chiral ionic liquids. Angew Chem Int Ed 55(1):408–412. https://doi.org/10.1002/anie.201505922. (PMID: 10.1002/anie.201505922)
Sierra I, Pérez-Quintanilla D, Morante S, Gañán J (2014) Novel supports in chiral stationary phase development for liquid chromatography. Preparation, characterization and application of ordered mesoporous silica particles. J Chromatogr A 1363:27–40. https://doi.org/10.1016/j.chroma.2014.06.063. (PMID: 10.1016/j.chroma.2014.06.06325015243)
Förster S, Roos J, Effenberger F, Wajant H, Sprauer A (1996) The first recombinant hydroxynitrile lyase and its application in the synthesis of (S)-cyanohydrins. Angew Chem Int Ed 35(4):437–439. https://doi.org/10.1002/anie.199604371. (PMID: 10.1002/anie.199604371)
Tarafder A, Miller L (2021) Chiral chromatography method screening strategies: past, present and future. J Chromatogr A 1638:461878. https://doi.org/10.1016/j.chroma.2021.461878. (PMID: 10.1016/j.chroma.2021.46187833477025)
Zhang JH, Xie SM, Yuan LM (2022) Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 45(1):51–77. https://doi.org/10.1002/jssc.202100593. (PMID: 10.1002/jssc.20210059334729907)
Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170. https://doi.org/10.1126/science.1120411. (PMID: 10.1126/science.112041116293756)
Zhang K, Cai SL, Yan YL, He ZH, Lin HM, Huang XL, Zheng SR, Fan J, Zhang WG (2017) Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J Chromatogr A 1519:100–109. https://doi.org/10.1016/j.chroma.2017.09.007. (PMID: 10.1016/j.chroma.2017.09.00728899554)
Zhao WJ, Hu K, Hu CC, Wang XY, Yu AJ, Zhang SS (2017) Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J Chromatogr A 1487:83–88. https://doi.org/10.1016/j.chroma.2016.12.082. (PMID: 10.1016/j.chroma.2016.12.08228117124)
Zhong C, Chen BB, He M, Hu B (2017) Covalent triazine framework-1 as adsorbent for inline solid phase extraction-high performance liquid chromatographic analysis of trace nitroimidazoles in porcine liver and environmental waters. J Chromatogr A 1483:40–47. https://doi.org/10.1016/j.chroma.2016.12.073. (PMID: 10.1016/j.chroma.2016.12.07328043690)
Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453. https://doi.org/10.1002/anie.200705710. (PMID: 10.1002/anie.200705710)
Wang KW, Yang LM, Wang X, Guo LP, Cheng G, Jin SB, Tan BE, Cooper A (2017) Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Edit 56(45):14149–14153. https://doi.org/10.1002/anie.201708548. (PMID: 10.1002/anie.201708548)
Ren SJ, Bojdys MJ, Dawson R, Laybourn A, Khimyak ZY, Adams DJ, Cooper AI (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24(17):2357–2361. https://doi.org/10.1002/adma.201200751. (PMID: 10.1002/adma.20120075122488602)
Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A (2013) Covalent triazine frameworks prepared from 1, 3, 5-tricyanobenzene. Chem Mater 25(9):1542–1548. https://doi.org/10.1021/cm303751n. (PMID: 10.1021/cm303751n)
Jena HS, Krishnaraj C, Schmidt J, Leus K, Van Hecke K, Van Der Voort P (2020) Effect of building block transformation in covalent triazine-based frameworks for enhanced CO 2 uptake and metal-free heterogeneous catalysis. Chem Eur J 26(7):1548–1557. https://doi.org/10.1002/chem.201903926. (PMID: 10.1002/chem.20190392631603596)
Chen YL, Xia L, Lu ZC, Li GK, Hu YL (2021) In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation. J Chromatogr A 1654:462475. https://doi.org/10.1016/j.chroma.2021.462475. (PMID: 10.1016/j.chroma.2021.46247534438304)
Xu NY, Guo P, Chen JK, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral core-shell microspheres β-CD-COF@SiO 2 used for HPLC enantioseparation. Talanta 235:122754. https://doi.org/10.1016/j.talanta.2021.122754. (PMID: 10.1016/j.talanta.2021.12275434517622)
Chen JK, Xu NY, Guo P, Wang BJ, Zhang JH, Xie SM, Yuan LM (2021) A chiral metal-organic framework core-shell microspheres composite for high-performance liquid chromatography enantioseparation. J Sep Sci 44(21):3976–3985. https://doi.org/10.1002/jssc.202100557. (PMID: 10.1002/jssc.20210055734490989)
Yuan BY, Li L, Yu YY, Xu NY, Fu N, Zhang JH, Zhang M, Wang BJ, Xie SM, Yuan LM (2021) Chiral metal-organic framework [Co 2 (D-cam) 2 (TMDPy)]@SiO 2 core-shell microspheres for HPLC separation. Microchem J 161:105815. https://doi.org/10.1016/j.microc.2020.105815. (PMID: 10.1016/j.microc.2020.105815)
Guo P, Yuan BY, Yu YY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral covalent organic framework core-shell composite CTpBD@SiO 2 used as stationary phase for HPLC enantioseparation. Microchim Acta 188(9):1–10. https://doi.org/10.1007/s00604-021-04954-3. (PMID: 10.1007/s00604-021-04954-3)
Qian HL, Yang CX, Yan XP (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7(1):12104. https://doi.org/10.1038/ncomms12104. (PMID: 10.1038/ncomms12104274015414945876)
Zhang SY, Zhou J, Li HB (2022) Chiral covalent organic framework packed nanochannel membrane for enantioseparation. Angewandte Chemie 61(27):e202204012. https://doi.org/10.1002/ange.202204012. (PMID: 10.1002/ange.20220401235475564)
Wang GX, Lv WJ, Pan CJ, Chen HL, Chen XG (2022) Synthesis of a novel chiral DA-TD covalent organic framework for open-tubular capillary electrochromatography enantioseparation. Chrm Commun 58(3):403–406. https://doi.org/10.1039/D1CC06420G. (PMID: 10.1039/D1CC06420G)
Ran XY, Guo P, Liu CF, Zhu YL, Liu C, Wang BJ, Zhang JH, Xie SM, Yuan LM (2023) Chiral covalent-organic framework MDI-β-CD-modified COF@SiO 2 core–shell composite for HPLC enantioseparation. Molecules 28(2):662. https://doi.org/10.3390/molecules28020662. (PMID: 10.3390/molecules28020662366777199866547)
Ren SZ, Zhu D, Zhu XH, Wang B, Yang YS, Sun WX, Wang XM, Lv PC, Wang ZC, Zhu HL (2019) Nanoscale metal-organic-frameworks coated by biodegradable organosilica for pH and redox dual responsive drug release and high-performance anticancer therapy. ACS Appl Mater Inter 11(23):20678–20688. https://doi.org/10.1021/acsami.9b04236. (PMID: 10.1021/acsami.9b04236)
Kuang X, Ma Y, Su H, Zhang J, Dong YB, Tang B (2014) High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework. Anal Chem 86(2):1277–1281. https://doi.org/10.1021/ac403674p. (PMID: 10.1021/ac403674p24380495)
Xie SM, Hu C, Li L, Zhang JH, Fu N, Wang BJ, Yuan LM (2018) Homochiral metal-organic framework for HPLC separation of enantiomers. Microchem J 139:487–491. https://doi.org/10.1016/j.microc.2018.03.035. (PMID: 10.1016/j.microc.2018.03.035)
Zhang M, Zhang JH, Zhang Y, Wang BJ, Xie SM, Yuan LM (2014) Chromatographic study on the high performance separation ability of a homochiral [Cu 2 (d-Cam) 2 (4, 4-bpy)] n based-column by using racemates and positional isomers as test probes. J Chromatogr A 1325:163–170. https://doi.org/10.1016/j.chroma.2013.12.023. (PMID: 10.1016/j.chroma.2013.12.02324373537)
Ameloot R, Liekens A, Alaerts L, Maes M, Galarneau A, Coq B, Desmet G, Sels BF, Denayer JFM (2010) De Vos DE (2010) Silica-MOF composites as a stationary phase in liquid chromatography. Eur J Inorg Chem 24:3735–3738. https://doi.org/10.1002/ejic.201000494. (PMID: 10.1002/ejic.201000494)
Yu YY, Xu NY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2020) Chiral metal-organic framework D-His-ZIF-8@SiO 2 core-shell microspheres used for HPLC enantioseparations. ACS Appl Mater Inter 12(14):16903–16911. https://doi.org/10.1021/acsami.0c01023. (PMID: 10.1021/acsami.0c01023)
Xie SM, Zhang JH, Fu N, Wang BJ, Chen L, Yuan LM (2016) A chiral porous organic cage for molecular recognition using gas chromatography. Anal Chim Acta 903:156–163. https://doi.org/10.1016/j.aca.2015.11.030. (PMID: 10.1016/j.aca.2015.11.03026709309)
فهرسة مساهمة: Keywords: Chiral covalent triazine frameworks; Core-shell microspheres composite; Enantioseparation; High-performance liquid chromatography; Stationary phase
تواريخ الأحداث: Date Created: 20230524 Date Completed: 20230525 Latest Revision: 20230525
رمز التحديث: 20240628
DOI: 10.1007/s00604-023-05806-y
PMID: 37222823
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-5073
DOI:10.1007/s00604-023-05806-y