دورية أكاديمية

Highly efficient visible-LED-driven photocatalytic degradation of tetracycline and rhodamine B over Bi 2 WO 6 /BiVO 4 heterostructures decorated with silver and graphene synthesized by a novel green method.

التفاصيل البيبلوغرافية
العنوان: Highly efficient visible-LED-driven photocatalytic degradation of tetracycline and rhodamine B over Bi 2 WO 6 /BiVO 4 heterostructures decorated with silver and graphene synthesized by a novel green method.
المؤلفون: Segovia-Sandoval SJ; División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato GTO, 36050, México., Mendoza-Mendoza E; Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Dr. M. Nava 6, San Luis Potosí SLP, 78210, México. esmeralda.mendoza@uaslp.mx.; Centro de Investigación en Ciencias de La Salud y Biomedicina, Microscopia de Alta Resolución, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí SLP, 78210, México. esmeralda.mendoza@uaslp.mx.; Investigadores por México-CONACYT, Cuidad de México, México. esmeralda.mendoza@uaslp.mx., Jacobo-Azuara A; División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Col. Noria Alta S/N, Guanajuato GTO, 36050, México., Jiménez-López BA; Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Dr. M. Nava 6, San Luis Potosí SLP, 78210, México.; Centro de Investigación en Ciencias de La Salud y Biomedicina, Microscopia de Alta Resolución, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí SLP, 78210, México., Hernández-Arteaga AC; Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí SLP, 78210, México.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jun; Vol. 31 (28), pp. 39945-39960. Date of Electronic Publication: 2023 May 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Rhodamines*/chemistry , Graphite*/chemistry , Bismuth*/chemistry , Tetracycline*/chemistry , Silver*/chemistry, Catalysis ; Vanadates/chemistry ; Light
مستخلص: Visible-light-driven Bi 2 WO 6 /BiVO 4 (BWO/BVO) heterostructures were obtained by joining BWO and BVO n-type semiconductors. A novel and green metathesis-assisted molten salt route was applied to synthesize BWO/BVO. This route is straightforward, high-yield, intermediate temperature, and was successful for obtaining BWO/BVO heterostructures with several ratios (1:1, 1:2, 2:1 w/w). Besides, the 1BWO/1BVO was decorated with Ag nanoparticles (Ag-NPs, 6 wt.%) and graphene (G, 3 wt.%), applying simple and environmentally responsible procedures. The heterostructures were characterized by XRD, Raman, UV-Vis DRS, TEM/HRTEM, PL, and Zeta potential techniques. Ag-NPs and G effectively boosted the photocatalytic activity of 1BWO/1BVO for degrading tetracycline (TC) and rhodamine B (RhB) pollutants. A lab-made 19-W blue LED photoreactor was designed, constructed, and operated to induce the photoactivity of BWO/BVO heterostructures. The low-rated power consumption of the photoreactor (0.01-0.04 kWh) vs. the percent degradation of TC or RhB (%X TC  = 73, %X RhB  = 100%) is one of the outstanding features of this study. Besides, scavenger tests determined that holes and superoxides are the main oxidative species that produced TC and RhB oxidation. Ag/1BWO/1BVO exhibited high stability in reuse photocatalytic cycles.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abd-Rabboh HSM, Benaissa M, Hamdy MS, Ahmed MA, Glal M (2021) Synthesis of an efficient, and recyclable mesoporous BiVO 4 /TiO 2 direct Z-scheme heterojunction by sonochemical route for photocatalytic hydrogen production and photodegradation of rhodamine B dye in the visible region. Opt Mater 114:110761. https://doi.org/10.1016/j.optmat.2020.110761. (PMID: 10.1016/j.optmat.2020.110761)
Ahamad A, Madhav S, Singh AK, Kumar A, Singh P (2020) Types of water pollutants: conventional and emerging. In: Pooja D, Kumar P, Singh P, Patil S (eds) Sensors in water pollutants monitoring: role of material, 1st edn. Springer, Singapore, pp 21–41. (PMID: 10.1007/978-981-15-0671-0_3)
Ai Y, Liu Y, Huo Y, Zhao C, Sun L, Han B, Wang X (2019) Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials. Environ Sci Nano 6(11):3336–3348. https://doi.org/10.1039/C9EN00866G. (PMID: 10.1039/C9EN00866G)
Chaiwichian S, Inceesungvorn B, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N (2014) Highly efficient visible-light-induced photocatalytic activity of Bi 2 WO 6 /BiVO 4 heterojunction photocatalysts. Mater Res Bull 54:28–33. https://doi.org/10.1016/j.materresbull.2014.03.012. (PMID: 10.1016/j.materresbull.2014.03.012)
Chen F, Zhao J, Hidaka H (2003) Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO 2 /SiO 2 composite photocatalyst. Int J Photoenergy 5(4):209–217. https://doi.org/10.1155/S1110662X03000345. (PMID: 10.1155/S1110662X03000345)
Chen Y, Fang J, Lu S, Xu W, Liu Z, Xu X, Fang Z (2015) One- step hydrothermal synthesis of BiOI/Bi 2 WO 6 hierarchical heterostructure with highly photocatalytic activity. J Chem Technol Biotechnol 90(5):947–954. https://doi.org/10.1002/jctb.4407. (PMID: 10.1002/jctb.4407)
Chen F, Yang Q, Sun J, Yao F, Wang S, Wang Y, Wang X, Li X, Niu C, Wang D, Zeng G (2016) Enhanced photocatalytic degradation of tetracycline by AgI/BiVO 4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism. ACS Appl Mater Interfaces 8:32887–32900. https://doi.org/10.1021/acsami.6b1227. (PMID: 10.1021/acsami.6b1227)
Chen L, Meng D, Wu X, Wang A, Wang J, Yu M, Liang Y (2016) Enhanced visible light photocatalytic performances of self-assembled hierarchically structured BiVO 4 /Bi 2 WO 6 heterojunction composites with different morphologies. RSC Adv 6(57):52300–52309. https://doi.org/10.1039/c6ra08685c. (PMID: 10.1039/c6ra08685c)
Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. https://doi.org/10.1007/s10311-013-0404-8. (PMID: 10.1007/s10311-013-0404-8)
Dai Y, Liu M, Li J, Yang S, Sun Y, Sun Q, Liu Z (2020) A review on pollution situation and treatment methods of tetracycline in groundwater. Sep Sci Technol 55(5):1005–1021. https://doi.org/10.1080/01496395.2019.1577445. (PMID: 10.1080/01496395.2019.1577445)
Dürckheimer W (1975) Tetracyclines: chemistry, biochemistry, and structure-activity relations. Angew Chem Int Ed Engl 14:721–734. https://doi.org/10.1002/anie.197507211. (PMID: 10.1002/anie.197507211)
Geng Y, Zhang P, Kuang S (2014) Fabrication and enhanced visible-light photocatalytic activities of BiVO 4 /Bi 2 WO 6 composites. RSC Adv 4(86):46054–46059. https://doi.org/10.1039/c4ra07427k. (PMID: 10.1039/c4ra07427k)
Guo Y, Wei J, Yang T, Lv Z, Xu Z (2019) Manipulation of surface plasmon resonance for high photocatalytic activity of Ag-Bi 2 WO 6 hetero-architecture. Optik 180:285–294. https://doi.org/10.1016/j.ijleo.2018.11.094. (PMID: 10.1016/j.ijleo.2018.11.094)
Gupta S, Tripathi M (2010) A review of TiO 2 nanoparticles. Phys Chem Chin Sci Bull 56(16):1639–1657. https://doi.org/10.1007/s11434-011-4476-1. (PMID: 10.1007/s11434-011-4476-1)
Hanafi MF, Sapawe N (2020) A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater Today 31:A141–A150. https://doi.org/10.1016/j.matpr.2021.01.258. (PMID: 10.1016/j.matpr.2021.01.258)
He X, Kai T, Ding P (2021) Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environ Chem Lett 19(6):4563–4601. https://doi.org/10.1007/s10311-021-01295-8. (PMID: 10.1007/s10311-021-01295-8)
Hitam CN, Jalil AA (2020) A review on exploration of Fe 2 O 3 photocatalyst towards degradation of dyes and organic contaminants. J Environ Manage 258:110050. https://doi.org/10.1016/j.jenvman.2019.110050. (PMID: 10.1016/j.jenvman.2019.110050)
Hu H, Kong W, Wang J, Liu C, Cai Q, Kong Y, Yang Z (2021) Engineering 2D compressed layered g-C 3 N 4 nanosheets by the intercalation of BiVO 4 -Bi 2 WO 6 composites for boosting photocatalytic activities. Appl Surf Sci 557:149796. https://doi.org/10.1016/j.apsusc.2021.149796. (PMID: 10.1016/j.apsusc.2021.149796)
Huang H, Zhang J, Jiang L, Zang Z (2017) Preparation of cubic Cu 2 O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J Alloys Compd 718:112–115. https://doi.org/10.1016/j.jallcom.2017.05.132. (PMID: 10.1016/j.jallcom.2017.05.132)
Jakimińska A, Pawlicki M, Macyk W (2022) Photocatalytic transformation of rhodamine B to rhodamine-110–the mechanism revisited. J Photochem Photobiol A 433:114176. https://doi.org/10.1016/j.jphotochem.2022.114176. (PMID: 10.1016/j.jphotochem.2022.114176)
Lee SY, Park SJ (2013) TiO 2 photocatalyst for water treatment applications. J Ind Eng Chem 19(6):1761–1769. https://doi.org/10.1016/j.jiec.2013.07.012. (PMID: 10.1016/j.jiec.2013.07.012)
Lin Y, Pan D, Luo H (2021) Hollow direct Z-Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production. Mater Sci Semicond Process 121:105453. https://doi.org/10.1016/j.mssp.2020.105453. (PMID: 10.1016/j.mssp.2020.105453)
Liu X, Gu S, Zhao Y, Zhou G, Li W (2020) BiVO 4 , Bi 2 WO 6 and Bi 2 MoO 6 photocatalysis: a brief review. J Mater Sci Technol 56:45–68. https://doi.org/10.1016/j.jmst.2020.04.023. (PMID: 10.1016/j.jmst.2020.04.023)
Lu Q, Gao W, Du J, Zhou L, Lian Y (2012) Discovery of environmental rhodamine B contamination in paprika during the vegetation process. J Agric Food Chem 60(19):4773–4778. https://doi.org/10.1021/jf300067z. (PMID: 10.1021/jf300067z)
Maczka M, Macalik L, Hermanowicz K, Kȩpiński L, Tomaszewski P (2010) Phonon properties of nanosized bismuth layered ferroelectric material-Bi 2 WO 6 . J Raman Spectrosc 41(9):1059–1066. https://doi.org/10.1002/jrs.2526. (PMID: 10.1002/jrs.2526)
Malathi A, Madhavan J, Ashokkumar M, Arunachalam P (2018) A review on BiVO 4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl Catal A Gen 555:47–74. https://doi.org/10.1016/j.apcata.2018.02.010. (PMID: 10.1016/j.apcata.2018.02.010)
Mashuri SIS, Ibrahim ML, Kasim MF, Mastuli MS, Rashid U (2020) Photocatalysis for organic wastewater treatment: from the basis to current challenges for society. Catalysts 10(11):1–29. https://doi.org/10.3390/catal10111260. (PMID: 10.3390/catal10111260)
Méndez-Medrano MG, Kowalska E, Lehoux A, Herissan A, Ohtani B, Bahena D, Remita H (2016) Surface modification of TiO 2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J Phys Chem C 120(9):5143–5154. https://doi.org/10.1021/acs.jpcc.5b10703. (PMID: 10.1021/acs.jpcc.5b10703)
Mohamed MA, Elessawy NA, Carrasco-Marín F, Hamad HA (2019) A novel one-pot facile economic approach for the mass synthesis of exfoliated multilayered nitrogen-doped graphene-like nanosheets: new insights into the mechanistic study. Phys Chem Chem Phys 21(25):13611–13622. https://doi.org/10.1039/c9cp01418g. (PMID: 10.1039/c9cp01418g)
Moral-Rodríguez AI, Quintana M, Leyva-Ramos R, Ojeda-Galván HJ, Oros-Ruiz S, Peralta-Rodríguez RD, Mendoza-Mendoza E (2022) Novel and green synthesis of BiVO 4 and GO/BiVO 4 photocatalysts for efficient dyes degradation under blue LED illumination. Ceram Int 48(1):1264–1276. https://doi.org/10.1016/j.ceramint.2021.09.211. (PMID: 10.1016/j.ceramint.2021.09.211)
Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO 2 process for degradation of rhodamine B dye. Chem Eng J 169(1–3):126–134. https://doi.org/10.1016/j.cej.2011.02.066. (PMID: 10.1016/j.cej.2011.02.066)
Nguyen TD, Hong SS (2020) Facile solvothermal synthesis of monoclinic-tetragonal heterostructured BiVO 4 for photodegradation of rhodamine B. Catal Commun 136:105920. https://doi.org/10.1016/j.catcom.2019.105920. (PMID: 10.1016/j.catcom.2019.105920)
Ortiz-Ramos U, Leyva-Ramos R, Mendoza-Mendoza E, Aragón-Piña A (2022) Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite. Effect of operating conditions and adsorption mechanism. Chem Eng J 432:134428. https://doi.org/10.1016/j.cej.2021.134428. (PMID: 10.1016/j.cej.2021.134428)
Pastrana-Martínez LM, Morales-Torres S, Likodimos V, Falaras P, Figueiredo JL, Faria JL, Silva AMT (2014) Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO 2 composites. Appl Catal B 158:329–340. https://doi.org/10.1016/j.apcatb.2014.04.024. (PMID: 10.1016/j.apcatb.2014.04.024)
Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, Maqbool M (2021) Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem 97:111–128. https://doi.org/10.1016/j.jiec.2021.02.017. (PMID: 10.1016/j.jiec.2021.02.017)
Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. https://doi.org/10.1107/S0021889869. (PMID: 10.1107/S0021889869)
Rivera-Utrilla J, Gómez-Pacheco CV, Sánchez-Polo M, López-Peñalver JJ, Ocampo-Pérez R (2013) Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J Environ Manage 131:16–24. https://doi.org/10.1016/j.jenvman.2013.09.024. (PMID: 10.1016/j.jenvman.2013.09.024)
Saxena R, Saxena M, Lochab A (2020) Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. ChemistrySelect 5(1):335–353. https://doi.org/10.1002/slct.201903542. (PMID: 10.1002/slct.201903542)
Segovia-Sandoval SJ, Ojeda-Galván HJ, Moral-Rodríguez AI, Rodríguez-Hernández J, Peralta-Rodríguez RD, Gómez-Villegas KJ, Mendoza-Mendoza E (2022) A novel green synthesis of Bi 2 WO 6 -based photocatalysts for efficient pollutants degradation using low-power UV-A LEDs. J Alloys Compd 911:165018. https://doi.org/10.1016/j.jallcom.2022.165018. (PMID: 10.1016/j.jallcom.2022.165018)
Shen K, Gondal MA (2017) Removal of hazardous rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21:S120–S127. https://doi.org/10.1016/j.jscs.2013.11.005. (PMID: 10.1016/j.jscs.2013.11.005)
Si Y, Chen Y, Fu Y, Zhang X, Zuo F, Zhang T, Yan Q (2020) Hierarchical self-assembly of graphene-bridged on AgIO 3 /BiVO 4 : an efficient heterogeneous photocatalyst with enhanced photodegradation of organic pollutant under visible light. J Alloys Compd 823:154820. https://doi.org/10.1016/j.jallcom.2020.154820. (PMID: 10.1016/j.jallcom.2020.154820)
Trikkaliotis DG, Christoforidis AK, Mitropoulos AC, Kyzas GZ (2021) Graphene oxide synthesis, properties and characterization techniques: a comprehensive review. ChemEngineering 5(3):64. https://doi.org/10.3390/chemengineering5030064. (PMID: 10.3390/chemengineering5030064)
Wang J, Zhi D, Zhou H, He X, Zhang D (2018) Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti 4 O 7 anode. Water Res 137:324–334. https://doi.org/10.1016/j.watres.2018.03.030. (PMID: 10.1016/j.watres.2018.03.030)
Wang W, Lin L, Yu D, Liu B (2018) Study on the photocatalytic performance of BiVO 4 /Bi 2 WO 6 /multi-walled carbon nanotube nanocomposites in one-pot hydrothermal process. J Nanosci Nanotechnol 18(11):7691–7702. https://doi.org/10.1166/jnn.2018.15559. (PMID: 10.1166/jnn.2018.15559)
Wang T, Liu S, Mao W, Bai Y, Chiang K, Shah K, Paz-Ferreiro J (2020) Novel Bi 2 WO 6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(VI). J Hazard Mater 389:121827. https://doi.org/10.1016/j.jhazmat.2019.121827. (PMID: 10.1016/j.jhazmat.2019.121827)
Wang S, Zhao L, Huang W, Zhao H, Chen J, Cai Q, Shi W (2021) Solvothermal synthesis of CoO/BiVO 4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline. Mater Res Bull 135:111161. https://doi.org/10.1016/j.materresbull.2020.111161. (PMID: 10.1016/j.materresbull.2020.111161)
Wang Y, Sun X, Xian T, Liu G, Yang H (2021) Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO 3 /Bi 2 WO 6 heterojunction photocatalysts. Opt Mater 113:110853. https://doi.org/10.1016/j.optmat.2021.110853. (PMID: 10.1016/j.optmat.2021.110853)
Wei Z, Xinyue T, Xiaomeng W, Benlin D, Lili Z, Jiming X, Fengxia Z (2019) Novel p-n heterojunction photocatalyst fabricated by flower-like BiVO 4 and Ag 2 S nanoparticles: simple synthesis and excellent photocatalytic performance. Chem Eng J 361:1173–1181. https://doi.org/10.1016/j.cej.2018.12.120. (PMID: 10.1016/j.cej.2018.12.120)
Wu S, Hu H, Lin Y, Zhang J, Hang HuY (2019) Visible light photocatalytic degradation of tetracycline over TiO 2 . Chem Eng J 382:122842. https://doi.org/10.1016/j.cej.2019.122842. (PMID: 10.1016/j.cej.2019.122842)
Xia J, Yin S, Li H, Xu H, Xu L, Xu Y (2011) Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans 40(19):5249–5258. https://doi.org/10.1039/C0DT01511C. (PMID: 10.1039/C0DT01511C)
Xue S, Wei Z, Hou X, Xie W, Li S, Shang X, He D (2015) Enhanced visible-light photocatalytic activities and mechanism insight of BiVO 4 /Bi 2 WO 6 composites with virus-like structures. Appl Surf Sci 355:1107–1115. https://doi.org/10.1016/j.apsusc.2015.08.004. (PMID: 10.1016/j.apsusc.2015.08.004)
Yang P, Chen C, Wang D, Ma H, Du Y, Cai D, Wu Z (2021) Kinetics, reaction pathways, and mechanism investigation for improved environmental remediation by 0D/3D CdTe/Bi 2 WO 6 Z-scheme catalyst. Appl Cata B 285:119877. https://doi.org/10.1016/j.apcatb.2021.119877. (PMID: 10.1016/j.apcatb.2021.119877)
Yusuf TL, Orimolade BO, Masekela D, Mamba B, Mabuba N (2022) The application of photoelectrocatalysis in the degradation of rhodamine B in aqueous solutions: a review. RSC Adv 12(40):26176–26191. https://doi.org/10.1039/D2RA04236C. (PMID: 10.1039/D2RA04236C)
Zada A, Muhammad P, Ahmad W, Hussain Z, Ali S, Khan M, Khan Q, Maqbool M (2020) Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv Funct 30(7):1906744. https://doi.org/10.1002/adfm.201906744. (PMID: 10.1002/adfm.201906744)
Zhang LW, Wang YJ, Cheng HY, Yao WQ, Zhu YF (2009) Synthesis of porous Bi 2 WO 6 thin films as efficient visible-light-active photocatalysts. Adv Mater 21(12):1286–1290. https://doi.org/10.1002/ADMA.200801354. (PMID: 10.1002/ADMA.200801354)
Zhang X, Gong Y, Dong X, Zhang X, Ma C, Shi F (2012) Fabrication and efficient visible light-induced photocatalytic activity of Bi 2 WO 6 /BiVO 4 heterojunction. Mater Chem Phys 136(2–3):472–476. https://doi.org/10.1016/j.matchemphys.2012.07.013. (PMID: 10.1016/j.matchemphys.2012.07.013)
Zhang Z, Wang W, Gao E, Sun S, Zhang L (2012) Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi 2 WO 6 with enhanced photocatalytic activity. J Phys Chem C 116(49):25898–25903. https://doi.org/10.1021/jp309719q. (PMID: 10.1021/jp309719q)
Zhang Y, Song H, Han J, Liu Y, Sun J, Shen T, Yao X (2023) Construction of a Bi 2 WO 6 /BiVO 4 photocatalytic system for efficient visible light degradation of tetracycline drugs. RSC Adv 13(6):3612–3622. https://doi.org/10.1039/D2RA07460E. (PMID: 10.1039/D2RA07460E)
Zhao C, Hong P, Li Y, Song X, Wang Y, Yang Y (2019) Mechanism of adsorption of tetracycline–Cu multi-pollutants by graphene oxide (GO) and reduced graphene oxide (rGO). J Chem Technol Biotechnol 94(4):1176–1186. https://doi.org/10.1002/jctb.5864. (PMID: 10.1002/jctb.5864)
فهرسة مساهمة: Keywords: Antibiotics; Bismuth; Dyes; Heterojunctions; Photodegradation; Visible LEDs
المشرفين على المادة: 0 (Rhodamines)
K7G5SCF8IL (rhodamine B)
7782-42-5 (Graphite)
U015TT5I8H (Bismuth)
F8VB5M810T (Tetracycline)
3M4G523W1G (Silver)
14059-33-7 (bismuth vanadium tetraoxide)
3WHH0066W5 (Vanadates)
تواريخ الأحداث: Date Created: 20230525 Date Completed: 20240620 Latest Revision: 20240620
رمز التحديث: 20240620
DOI: 10.1007/s11356-023-27731-6
PMID: 37227646
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-27731-6