دورية أكاديمية

Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner.

التفاصيل البيبلوغرافية
العنوان: Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner.
المؤلفون: Warde KM; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Smith LJ; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Liu L; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Stubben CJ; Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Lohman BK; Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Willett PW; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Ammer JL; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA., Castaneda-Hernandez G; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Imodoye SO; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Zhang C; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Jones KD; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA., Converso-Baran K; Frankel Cardiovascular Center Physiology and Phenotyping Core, University of Michigan, Ann Arbor, MI, USA., Ekiz HA; Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla Izmir, Turkey., Barry M; Department of Pathology, University of Utah, Salt Lake City, UT, USA., Clay MR; Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, CO, USA., Kiseljak-Vassiliades K; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, CO, USA., Giordano TJ; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.; Department of Pathology, University of Michigan, Ann Arbor, MI, USA.; Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA., Hammer GD; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.; Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA., Basham KJ; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. kaitlin.basham@hci.utah.edu.
المصدر: Nature aging [Nat Aging] 2023 Jul; Vol. 3 (7), pp. 846-865. Date of Electronic Publication: 2023 May 25.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group US Country of Publication: United States NLM ID: 101773306 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2662-8465 (Electronic) Linking ISSN: 26628465 NLM ISO Abbreviation: Nat Aging Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [New York] : Nature Publishing Group US, [2021]-
مواضيع طبية MeSH: Adrenocortical Carcinoma*/genetics , Adrenal Cortex Neoplasms*/genetics, Male ; Animals ; Female ; Aging ; Cellular Senescence ; Signal Transduction ; Tumor Microenvironment
مستخلص: Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.
(© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.)
التعليقات: Comment in: Nat Aging. 2023 Jul;3(7):764-765. (PMID: 37291221)
Comment in: Nat Rev Endocrinol. 2023 Aug;19(8):439. (PMID: 37328682)
References: National Cancer Institute. Age and Cancer Risk https://www.cancer.gov/about-cancer/causes-prevention/risk/age (2021).
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018). (PMID: 29313949)
Rozhok, A. & DeGregori, J. A generalized theory of age-dependent carcinogenesis. eLife 8, e39950 (2019). (PMID: 310343566488293)
Laconi, E., Marongiu, F. & DeGregori, J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br. J. Cancer 122, 943–952 (2020). (PMID: 320420677109142)
Phillip, J. M., Aifuwa, I., Walston, J. & Wirtz, D. The mechanobiology of aging. Annu. Rev. Biomed. Eng. 17, 113–141 (2015). (PMID: 266430204886230)
Crona, J. & Beuschlein, F. Adrenocortical carcinoma—towards genomics guided clinical care. Nat. Rev. Endocrinol. 15, 548–560 (2019). (PMID: 31147626)
Else, T. et al. Adrenocortical carcinoma. Endocr. Rev. 35, 282–326 (2014). (PMID: 24423978)
Flurkey, K., Mcurrer, J. & Harrison, D. Mouse models in aging research. In The Mouse in Biomedical Research Vol. 3, 637–672 (Elsevier, 2007).
Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017). (PMID: 28575679)
Assie, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607–612 (2014). (PMID: 24747642)
Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 29, 723–736 (2016). (PMID: 271657444864952)
Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–200 (2012). (PMID: 22575959)
Koo, B. K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012). (PMID: 22895187)
Berthon, A. et al. Constitutive β-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum. Mol. Genet. 19, 1561–1576 (2010). (PMID: 20106872)
Heaton, J. H. et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am. J. Pathol. 181, 1017–1033 (2012). (PMID: 228007563432433)
Borges, K. S. et al. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 39, 5282–5291 (2020). (PMID: 325618537378041)
Bingham, N. C., Verma-Kurvari, S., Parada, L. F. & Parker, K. L. Development of a steroidogenic factor 1/Cre transgenic mouse line. Genesis 44, 419–424 (2006). (PMID: 16937416)
Basham, K. J. et al. A ZNRF3-dependent Wnt/β-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 33, 209–220 (2019). (PMID: 306922076362817)
Mitani, F., Mukai, K., Miyamoto, H., Suematsu, M. & Ishimura, Y. Development of functional zonation in the rat adrenal cortex. Endocrinology 140, 3342–3353 (1999). (PMID: 10385432)
Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014). (PMID: 24336805)
Panier, S. & Boulton, S. J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15, 7–18 (2014). (PMID: 24326623)
Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019). (PMID: 31675495)
Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007). (PMID: 17868096)
Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008). (PMID: 190531742592359)
Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020). (PMID: 319450546964821)
Wiley, C. D. et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043–1050 (2017). (PMID: 286992395595671)
Kim, S.-J. et al. Endothelial Toll-like receptor 4 maintains lung integrity via epigenetic suppression of p16 INK4a . Aging Cell 18, e12914 (2019). (PMID: 307904006516428)
Limbad, C. et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE 15, e0227887 (2020). (PMID: 319451256964973)
Jochems, F. et al. The Cancer SENESCopedia: a delineation of cancer cell senescence. Cell Rep. 36, 109441 (2021). (PMID: 343203498333195)
Schiraldi, M. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med. 209, 551–563 (2012). (PMID: 223707173302219)
Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331–342 (2005). (PMID: 15803152)
Lau, L., Porciuncula, A., Yu, A., Iwakura, Y. & David, G. Uncoupling the senescence-associated secretory phenotype from cell cycle exit via interleukin-1 inactivation unveils its protumorigenic role. Mol. Cell. Biol. 39, e00586-18 (2019). (PMID: 309881576549465)
Galanos, P. et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 19, 37 (2018). (PMID: 295483355857109)
Li, Y. et al. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression. Cell Biosci. 5, 21 (2015). (PMID: 262734294535282)
Mosteiro, L., Pantoja, C., de Martino, A. & Serrano, M. Senescence promotes in vivo reprogramming through p16 INK4a and IL-6. Aging Cell 17, e12711 (2018). (PMID: 29280266)
Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010). (PMID: 200782174166495)
Kale, A., Sharma, A., Stolzing, A., Desprez, P.-Y. & Campisi, J. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 17, 16 (2020). (PMID: 325185757271494)
Naeim, F. Histiocytic and dendritic cell disorders. In Hematopathology (eds Naeim, F., Nagesh Rao, P. & Grody, W. W.) 489–512 (Elsevier, 2008).
Picarsic, J. L. & Chikwava, K. Disorders of histiocytes. In Hematopathology 3rd edn (ed. Hsi, E. D.) 567–616 (Elsevier, 2018).
Dale, D. C., Boxer, L. & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood 112, 935–945 (2008). (PMID: 18684880)
Ekiz, H. A., Conley, C. J., Stephens, W. Z. & O’Connell, R. M. CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments. BMC Bioinformatics 21, 191 (2020). (PMID: 324143217227235)
Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379 (2018). (PMID: 29466759)
Volberding, P. J. et al. Suppressive neutrophils require PIM1 for metabolic fitness and survival during chronic viral infection. Cell Rep. 35, 109160 (2021). (PMID: 340387228182757)
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). (PMID: 271419614987924)
Bassler, K., Schulte-Schrepping, J., Warnat-Herresthal, S., Aschenbrenner, A. C. & Schultze, J. L. The myeloid cell compartment—cell by cell. Annu. Rev. Immunol. 37, 269–293 (2019). (PMID: 30649988)
Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016). (PMID: 276371495040826)
Wang, H. et al. Role of bone marrow-derived CD11c + dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy. Basic Res. Cardiol. 112, 25 (2017). (PMID: 283492586502638)
Song, P. et al. Hepatic recruitment of CD11b + Ly6C + inflammatory monocytes promotes hepatic ischemia/reperfusion injury. Int. J. Mol. Med. 41, 935–945 (2018). (PMID: 29251315)
Dolfi, B. et al. Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Rep. 39, 110949 (2022). (PMID: 357050459210345)
Sano, H. et al. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Invest. 112, 389–397 (2003). (PMID: 12897206166291)
Hirani, N. et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 57, 2002559 (2021). (PMID: 332142098156151)
Lindner, B., Burkard, T. & Schuler, M. Phagocytosis assays with different pH-sensitive fluorescent particles and various readouts. BioTechniques 68, 245–250 (2020). (PMID: 32079414)
Grabek, A. et al. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell 25, 290–296 (2019). (PMID: 31104943)
Weiss, L. M. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am. J. Surg. Pathol. 8, 163–169 (1984). (PMID: 6703192)
Weiss, L. M., Medeiros, L. J. & Vickery, A. L. Pathologic features of prognostic significance in adrenocortical carcinoma. Am. J. Surg. Pathol. 13, 202–206 (1989). (PMID: 2919718)
Wu, C. et al. Myeloid signature reveals immune contexture and predicts the prognosis of hepatocellular carcinoma. J. Clin. Invest. 130, 4679–4693 (2020). (PMID: 324970247456226)
Beuschlein, F. et al. Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection. J. Clin. Endocrinol. Metab. 100, 841–849 (2015). (PMID: 25559399)
Mohan, D. R. et al. Targeted assessment of G0S2 methylation identifies a rapidly recurrent, routinely fatal molecular subtype of adrenocortical carcinoma. Clin. Cancer Res. 25, 3276–3288 (2019). (PMID: 307703527117545)
Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018). (PMID: 296282905982584)
Landwehr, L.-S. et al. Interplay between glucocorticoids and tumor-infiltrating lymphocytes on the prognosis of adrenocortical carcinoma. J. Immunother. Cancer 8, e000469 (2020). (PMID: 324744127264832)
Hägg, S. & Jylhävä, J. Sex differences in biological aging with a focus on human studies. eLife 10, e63425 (2021). (PMID: 339826598118651)
Clocchiatti, A., Cora, E., Zhang, Y. & Dotto, G. P. Sexual dimorphism in cancer. Nat. Rev. Cancer 16, 330–339 (2016). (PMID: 27079803)
Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022). (PMID: 3532223410294141)
Roediger, J. et al. Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src–Akt pathway. Mol. Cancer 13, 214 (2014). (PMID: 252168534171558)
Mirzakhani, K. et al. The androgen receptor–lncRNASAT1–AKT–p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Oncogene 41, 943–959 (2022). (PMID: 34667276)
Wilmouth, J. J. et al. Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. Sci. Adv. 8, eadd0422 (2022). (PMID: 362402769565812)
Chen, H.-A. et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov. 13, 432–453 (2023).
Marin, I. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 13, 410–431 (2023).
Jimenez, C. et al. Endocrine and neuroendocrine tumors special issue—checkpoint inhibitors for adrenocortical carcinoma and metastatic pheochromocytoma and paraganglioma: do they work? Cancers 14, 467 (2022). (PMID: 351587398833823)
Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017). (PMID: 286503385531419)
Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017). (PMID: 28487385)
Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017). (PMID: 290331305685550)
Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31 (2001). (PMID: 11684439)
Roberson, R. S., Kussick, S. J., Vallieres, E., Chen, S.-Y. J. & Wu, D. Y. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res. 65, 2795–2803 (2005). (PMID: 15805280)
Milanovic, M. et al. Senescence-associated reprogramming promotes cancer stemness. Nature 553, 96–100 (2018). (PMID: 29258294)
Fassnacht, M. et al. Combination chemotherapy in advanced adrenocortical carcinoma. N. Engl. J. Med. 366, 2189–2197 (2012). (PMID: 22551107)
Prasanna, P. G. et al. Therapy-induced senescence: opportunities to improve anti-cancer therapy. J. Natl Cancer Inst. 113, 1285–1298 (2021). (PMID: 337927178486333)
Saleh, T. et al. Therapy-induced senescence: an ‘old’ friend becomes the enemy. Cancers 12, 822 (2020). (PMID: 322353647226427)
Myrianthopoulos, V. et al. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol. Ther. 193, 31–49 (2019). (PMID: 30121319)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 23104886)
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10–12 (2011).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 255162814302049)
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2016).
ImmGen Consortium et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021).
Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020). (PMID: 32214235)
Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019). (PMID: 309796876620049)
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). (PMID: 235864633637064)
معلومات مُعتمدة: K08 CA222620 United States CA NCI NIH HHS
تواريخ الأحداث: Date Created: 20230525 Date Completed: 20230721 Latest Revision: 20231218
رمز التحديث: 20231218
DOI: 10.1038/s43587-023-00420-2
PMID: 37231196
قاعدة البيانات: MEDLINE
الوصف
تدمد:2662-8465
DOI:10.1038/s43587-023-00420-2