دورية أكاديمية

Contaminated meal intake (Aeromonas hydrophila) does not elicit hormonal or immune modulation in bullfrogs (Lithobates catesbeianus).

التفاصيل البيبلوغرافية
العنوان: Contaminated meal intake (Aeromonas hydrophila) does not elicit hormonal or immune modulation in bullfrogs (Lithobates catesbeianus).
المؤلفون: Figueiredo AC; Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil., Christie Monteiro Titon S; Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil., Lima AS; Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil., Floreste FR; Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil., Neto PGG; Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil., Gomes FR; Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
المصدر: Journal of experimental zoology. Part A, Ecological and integrative physiology [J Exp Zool A Ecol Integr Physiol] 2023 Aug; Vol. 339 (7), pp. 684-692. Date of Electronic Publication: 2023 May 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Periodicals, Inc Country of Publication: United States NLM ID: 101710204 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2471-5646 (Electronic) Linking ISSN: 24715638 NLM ISO Abbreviation: J Exp Zool A Ecol Integr Physiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : Wiley Periodicals, Inc., [2017]
مواضيع طبية MeSH: Aeromonas hydrophila* , Corticosterone*, Animals ; Rana catesbeiana ; Immunity, Innate ; Meals
مستخلص: The gastrointestinal tract (GIT) is colonized by resident microbiota but contact with foreign microbiota during feeding can impair GIT functions. During meal digestion, several vertebrates modulate the systemic immune function and immunoregulatory hormones concentration. However, in ectothermic animals, it is not known if this hormonal and immune modulation during the postprandial period is affected by the presence of pathogenic microbiota in the food. This study aimed to investigate the effects of contaminated meal ingestion on hormonal and innate immune responses in bullfrogs (Lithobates catesbeianus). Bullfrogs were divided into three treatments: fed three times with sterilized fish feed (control group), fed twice with sterilized fish feed and once with fish feed containing live bacteria (Aeromonas hydrophila, 10 9  UFC/mL), and fed three times with fish feed containing live bacteria. Blood and GIT tissues were collected 24 h after treatments to measure plasma and tissue corticosterone levels, NL ratio, and plasma bacterial killing ability. The ingestion of contaminated meal did not affect the hormonal and immune parameters. In conclusion, ingestion of contaminated food was not capable of intensifying the hypothalamic-pituitary-interrenal axis activation and the consequent hormonal and immune responses observed after feeding in bullfrogs. However, our results suggest that the ingestion of three contaminated meals tended to decrease stomach corticosterone levels (nonstatistically significant), possibly contributing to preventing the transmigration of the bacteria to organs outside the GIT.
(© 2023 Wiley Periodicals LLC.)
References: Ando, T., Brown, R. F., Berg, R. D., & Dunn, A. J. (2000). Bacterial translocation can increase plasma corticosterone and brain catecholamine and indoleamine metabolism. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 279, R2164-R2172.
Assis, V. R., Monteiro Titon, S. C., Teixeira queiroz-Hazarbassanov, N. G., de Oliveira Massoco, C., & Ribeiro Gomes, F. (2017). Corticosterone transdermal application in toads (Rhinella icterica): Effects on cellular and humoral immunity and steroid plasma levels. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 327, 200-213.
Assis, V. R., Titon, S. C. M., Barsotti, A. M. G., Spira, B., & Gomes, F. R. (2013). Antimicrobial capacity of plasma from anurans of the Atlantic Forest. South American Journal of Herpetology, 8, 155-160.
Assis, V. R., Titon, S. C. M., & Gomes, F. R. (2019). Acute stress, steroid plasma levels, and innate immunity in Brazilian toads. General and Comparative Endocrinology, 273, 86-97.
Balzan, S., de Almeida Quadros, C., de Cleva, R., Zilberstein, B., & Cecconello, I. (2007). Bacterial translocation: Overview of mechanisms and clinical impact. Journal of Gastroenterology and Hepatology, 22, 464-471.
Cain, D. W., & Cidlowski, J. A. (2017). Immune regulation by glucocorticoids. Nature Reviews Immunology, 17, 233-247.
Campbell, T. W. (2006). Hematologia de Anfíbios. In M. A. Trall (Ed.), Hematologia e Bioquímica Clínica Veterinária (pp. 291-300). Roca, São Paulo.
Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., & Owen, L. J. (2015). Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 26, 26191. https://doi.org/10.3402/mehd.v26.26191.
Chen, H. Q., & Lu, C. P. (1991). Study on pathogen of the fulminaing epidemic in domesticated carps. Journal of Nanjing Agricultural University, 14, 87-91.
Chung, O., Jin, S., Cho, Y. S., Lim, J., Kim, H., Jho, S., Kim, H.-M., Jun, J., Lee, H., Chon, A., Ko, J., Edwards, J., Weber, J. A., Han, K., O'Brien, S. J., Manica, A., Bhak, J., & Paek, W. K. (2015). The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the old and new world vultures. Genome Biology, 16, 215.
Cima, I., Corazza, N., Dick, B., Fuhrer, A., Herren, S., Jakob, S., Ayuni, E., Mueller, C., & Brunner, T. (2004). Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. Journal of Experimental Medicine, 200, 1635-1646.
Claësson, D., Abe, A. S., & Wang, T. (2015). Autonomic regulation of heart rate during specific dynamic action associated with digestion in the bullfrog Lithobates catesbeianus. Zoologia (Curitiba), 32, 492-496.
Coutinho, A. E., & Chapman, K. E. (2011). The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and Cellular Endocrinology, 335, 2-13.
Crespi, E. J., Vaudry, H., & Denver, R. J. (2004). Roles of corticotropin-releasing factor, neuropeptide y and corticosterone in the regulation of food intake in Xenopus laevis. Journal of Neuroendocrinology, 16, 279-288.
Cyrino, J. C., De Figueiredo, A. C., Córdoba-moreno, M. O., Gomes, F. R., & Titon, S. C. M. (2022). Day versus night melatonin and corticosterone modulation by LPS in distinct tissues of toads (Rhinella Icterica). Integrative and Comparative Biology, 62(6), 1606-1617. https://doi.org/10.1093/icb/ica.
de Assis, V. R., Titon, S. C. M., Barsotti, A. M. G., Titon, Jr., B., & Gomes, F. R. (2015). Effects of acute restraint stress, prolonged captivity stress and transdermal corticosterone application on immunocompetence and plasma levels of corticosterone on the Cururu toad (Rhinella icterica). PLoS ONE, 10, e0121005.
de Figueiredo, A. C., Nogueira, L. A. K., Titon, S. C. M., Gomes, F. R., & de Carvalho, J. E. (2022). Immune and hormonal regulation of the Boa constrictor (Serpentes; Boidae) in response to feeding. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 264, 111119.
Dias, D. D., De Stéfani, M. V., Ferreira, C. M., França, F. M., Ranzani-Paiva, M. J., & Santos, A. A. (2010). Haematologic and immunologic parameters of bullfrogs, Lithobates catesbeianus, fed probiotics. Aquaculture Research, 41, 1064-1071. https://doi.org/10.1111/j.1365-2109.2009.02390.x.
Ergang, P., Vagnerová, K., Hermanová, P., Vodička, M., Jágr, M., Šrůtková, D., Dvořáček, V., Hudcovic, T., & Pácha, J. (2021). The gut microbiota affects corticosterone production in the murine small intestine. International Journal of Molecular Sciences, 22, 4229.
Fernandes, P. A. C. M., Bothorel, B., Clesse, D., Monteiro, A. W. A., Calgari, C., Raison, S., Simonneaux, V., & Markus, R. P. (2009). Local corticosterone infusion enhances nocturnal pineal melatonin production in vivo. Journal of Neuroendocrinology, 21, 90-97.
Figueiredo, A. C., Titon, S. C. M., Cyrino, J. C., Nogueira, L. A. K., & Gomes, F. R. (2021). Immune and hormonal modulation in the postprandial period of bullfrogs (Lithobates catesbeianus). Journal of Experimental Biology, 224, 243153.
Figueiredo, A. C., Titon, S. C. M., Titon, Jr., B., Vasconcelos-Teixeira, R., Barsotti, A. M. G., & Gomes, F. R. (2021). Systemic hormonal and immune regulation induced by intraperitoneal LPS injection in bullfrogs (Lithobates catesbeianus). Comparative Biochemistry and Physiology A, 253, 110872.
Frankiensztajn, L. M., Elliott, E., & Koren, O. (2020). The microbiota and the hypothalamus-pituitary-adrenocortical (HPA) axis, implications for anxiety and stress disorders. Current Opinion in Neurobiology, 62, 76-82.
Galdeano, C. M., & Perdigón, G. (2006). The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clinical and Vaccine Immunology, 13, 219-226.
Galley, J. D., & Bailey, M. T. (2014). Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5, 390-396.
Guo, Z., Cui, J., Li, M., Liu, H., Zhang, M., Meng, F., Shi, G., Wang, R., He, X., & Zhao, Y. (2018). Effect of feeding frequency on growth performance, antioxidant status, immune response and resistance to hypoxia stress challenge on juvenile dolly varden char Salvelinus malma. Aquaculture, 486, 197-201.
Hansen, K., Sickelmann, F., Pietrowsky, R., Fehm, H. L., & Born, J. (1997). Systemic immune changes following meal intake in humans. American Physiological Society, 273, 548-553.
Hu, C. Y., & Hong, Y. J. (2000). Study on pathogen of ‘Red-Leg’ disease in bullfrogs. Journal of Fishery Sciences of China, 7, 126-128.
Kirschman, L. J., & Milligan-Myhre, K. C. (2019). The costs of living together: immune responses to the microbiota and chronic gut inflammation. Applied and Environmental Microbiology, 85(10), e02147-18. https://doi.org/10.1128/aem.02147-18.
Kostadinova, F., Schwaderer, J., Sebeo, V., & Brunner, T. (2014). Why does the gut synthesize glucocorticoids? Annals of Medicine, 46, 490-497.
Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., & Elinav, E. (2017). Dysbiosis and the immune system. Nature Reviews Immunology, 17, 219-232.
Lima, A. S., Ferreira, L. F., Silva, D. P., Gomes, F. R., & Titon, S. C. M. (2020). Thermal sensitivity of Bullfrog's immune response kept at different temperatures. Journal of Experimental Zoology A, 333, 767-778. https://doi.org/10.1002/jez.2436.
Luoma, R. L., Butler, M. W., & Stahlschmidt, Z. R. (2016). Plasticity of immunity in response to eating. Journal of Experimental Biology, 219, 1965-1968.
Lyte, M., Vulchanova, L., & Brown, D. R. (2010). Stress at the intestinal surface: Catecholamines and mucosa-bacteria interactions. Cell and Tissue Research, 343, 23-32.
Markus, R. P., Fernandes, P. A., Kinker, G. S., da Silveira Cruz-Machado, S., & Marçola, M. (2018). Immune-pineal axis-acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. British Journal of Pharmacology, 175, 3239-3250.
Meddings, J. B., & Swain, M. G. (2000). Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology, 119, 1019-1028.
Menezes-Garcia, Z., Do Nascimento Arifa, R. D., Acúrcio, L., Brito, C. B., Gouvea, J. O., Lima, R. L., Bastos, R. W., Fialho Dias, A. C., Antunes Dourado, L. P., Bastos, L. F. S., Queiroz-Júnior, C. M., Igídio, C. E. D., Bezerra, R. D. O., Vieira, L. Q., Nicoli, J. R., Teixeira, M. M., Fagundes, C. T., & Souza, D. G. (2020). Colonization by Enterobacteriaceae is crucial for acute inflammatory responses in murine small intestine via regulation of corticosterone production. Gut Microbes, 11, 1531-1546.
Mohamed, I., & Walaa, F. A. (2019). Effects of dietary compound probiotics on the growth performance and innate immune response of Nile Tilapia. Assiut Veterinary Medical Journal, 65, 112-119.
Mukherji, A., Kobiita, A., Ye, T., & Chambon, P. (2013). Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell, 153, 812-827.
Panasevich, M. R., Meers, G. M., Linden, M. A., Booth, F. W., Perfield, II, J. W., Fritsche, K. L., Wankhade, U. D., Chintapalli, S. V., Shankar, K., Ibdah, J. A., & Rector, R. S. (2018). High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. American Journal of Physiology-Endocrinology and Metabolism, 314, E78-E92.
Ringø, E., Myklebust, R., Mayhew, T. M., & Olsen, R. E. (2007). Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture, 268, 251-264.
Romero, L. M., & Reed, J. M. (2005). Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140, 73-79.
Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. J. (2016). Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends in Neurosciences, 39, 763-781.
Sautour, M., Mary, P., Chihib, N. E., & Hornez, J. P. (2003). The effects of temperature, water activity and pH on the growth of Aeromonas hydrophila and on its subsequent survival in microcosm water. Journal of Applied Microbiology, 95, 807-813.
Schroers, V., van der Marel, M., Neuhaus, H., & Steinhagen, D. (2009). Changes of intestinal mucus glycoproteins after peroral application of Aeromonas hydrophila to common carp (Cyprinus carpio). Aquaculture, 288, 184-189.
Secor, S. M. (2005). Evolutionary and cellular mechanisms regulating intestinal performance of amphibians and reptiles. Integrative and Comparative Biology, 45, 282-294.
Shu, Q., & Gill, H. S. (2002). Immune protection mediated by the probiotic lactobacillus rhamnosus HN001 (DR20) against Escherichia coli O157: H7 infection in mice. FEMS Immunology and Medical Microbiology, 34, 59-64.
Spahn, T. W. (2004). Modulating the intestinal immune system: The role of lymphotoxin and GALT organs. Gut, 53, 456-465.
Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.-N., Kubo, C., & Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. The Journal of Physiology, 558, 263-275.
Titon, S., Titon Junior, Jr., B., Gomes, F. R., & Assis, V. R. (2021). Short-term stressors and corticosterone effects on immunity in male toads (Rhinella icterica): A neuroimmune-endocrine approach. Brain, Behavior, & Immunity-Health, 13, 100230.
Wang, L., Wang, J., Lu, K., Song, K., Mai, K., Zhang, C., & Rahimnejad, S. (2020). Total replacement of fish meal with soybean meal in diets for bullfrog (Lithobates catesbeianus): Effects on growth performance and gut microbial composition. Aquaculture, 524, 735236.
Wickham, H. (2016). Ggplot2: elegant graphics for data analysis (Vol. 635). Springer-Verlag.
Wolowczuk, I., Verwaerde, C., Viltart, O., Delanoye, A., Delacre, M., Pot, B., & Grangette, C. (2008). Feeding our immune system: Impact on metabolism. Clinical and Developmental Immunology, 2008, 1-19.
Yang, M., Rahimnejad, S., Zhang, C., Song, K., Lu, K., & Wang, L. (2019). Histomorphology of gastrointestinal tract in bullfrog Rana (Lithobates) catesbeiana and evaluation of the changes induced by a soybean meal-based diet. Aquaculture Research, 51, 164-174.
Zhou, J., Nelson, T. M., Lopes, C. R., Zhou, S. J., Ward-Fear, G., Stuart, K. C., & Rollins, L. A. (2020). Microbial function is related to behavior of an invasive anuran. BioRxiv. https://doi.org/10.1101/2020.11.16.385690.
فهرسة مساهمة: Keywords: anuran; corticosterone; feeding; gastrointestinal tract; melatonin; systemic immune response
المشرفين على المادة: W980KJ009P (Corticosterone)
تواريخ الأحداث: Date Created: 20230526 Date Completed: 20230707 Latest Revision: 20230718
رمز التحديث: 20230718
DOI: 10.1002/jez.2710
PMID: 37232261
قاعدة البيانات: MEDLINE
الوصف
تدمد:2471-5646
DOI:10.1002/jez.2710