دورية أكاديمية

Where can managers effectively resist climate-driven ecological transformation in pinyon-juniper woodlands of the US Southwest?

التفاصيل البيبلوغرافية
العنوان: Where can managers effectively resist climate-driven ecological transformation in pinyon-juniper woodlands of the US Southwest?
المؤلفون: Noel AR; US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA.; Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA., Shriver RK; Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, Nevada, USA., Crausbay SD; Conservation Science Partners, Truckee, California, USA., Bradford JB; US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA.; Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA.
المصدر: Global change biology [Glob Chang Biol] 2023 Aug; Vol. 29 (15), pp. 4327-4341. Date of Electronic Publication: 2023 May 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Juniperus* , Pinus*, Ecosystem ; Forests ; Trees ; Climate Change
مستخلص: Pinyon-juniper (PJ) woodlands are an important component of dryland ecosystems across the US West and are potentially susceptible to ecological transformation. However, predicting woodland futures is complicated by species-specific strategies for persisting and reproducing under drought conditions, uncertainty in future climate, and limitations to inferring demographic rates from forest inventory data. Here, we leverage new demographic models to quantify how climate change is expected to alter population demographics in five PJ tree species in the US West and place our results in the context of a climate adaptation framework to resist, accept, or direct ecological transformation. Two of five study species, Pinus edulis and Juniperus monosperma, are projected to experience population declines, driven by both rising mortality and decreasing recruitment rates. These declines are reasonably consistent across various climate futures, and the magnitude of uncertainty in population growth due to future climate is less than uncertainty due to how demographic rates will respond to changing climate. We assess the effectiveness of management to reduce tree density and mitigate competition, and use the results to classify southwest woodlands into areas where transformation is (a) unlikely and can be passively resisted, (b) likely but may be resisted by active management, and (c) likely unavoidable, requiring managers to accept or direct the trajectory. Population declines are projected to promote ecological transformation in the warmer and drier PJ communities of the southwest, encompassing 37.1%-81.1% of our sites, depending on future climate scenarios. Less than 20% of sites expected to transform away from PJ have potential to retain existing tree composition by density reduction. Our results inform where this adaptation strategy could successfully resist ecological transformation in coming decades and allow for a portfolio design approach across the geographic range of PJ woodlands.
(© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
References: Allen, C. D., & Breshears, D. D. (1998). Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14839-14842. https://doi.org/10.1073/pnas.95.25.14839.
Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), art129. https://doi.org/10.1890/ES15-00203.1.
Anderegg, W. R. L., Kane, J. M., & Anderegg, L. D. L. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), 30-36. https://doi.org/10.1038/nclimate1635.
Andrews, C. M., D'Amato, A. W., Fraver, S., Palik, B., Battaglia, M. A., & Bradford, J. B. (2020). Low stand density moderates growth declines during hot droughts in semi-arid forests. Journal of Applied Ecology, 57(6), 1089-1102. https://doi.org/10.1111/1365-2664.13615.
Andrus, R. A., Harvey, B. J., Rodman, K. C., Hart, S. J., & Veblen, T. T. (2018). Moisture availability limits subalpine tree establishment. Ecology, 99(3), 567-575. https://doi.org/10.1002/ecy.2134.
Baker, W. L., & Shinneman, D. J. (2004). Fire and restoration of piñon-juniper woodlands in the western United States: A review. Forest Ecology and Management, 189(1), 1-21. https://doi.org/10.1016/j.foreco.2003.09.006.
Balda, R. P., & Masters, N. L. (1980). Avian communities in the pinyon-juniper woodlands: A descriptive analysis. Workshop Proceedings: Intermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Forest Service.
Batjes, N. H. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61-68. https://doi.org/10.1016/j.geoderma.2016.01.034.
Bechtold, W. A., & Patterson, P. L. (Eds.). (2005). The enhanced forest inventory and analysis program-National sampling design and estimation procedures. General Technical Report SRS-80. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 85 p, 080. https://doi.org/10.2737/SRS-GTR-80.
Bell, D. M., Bradford, J. B., & Lauenroth, W. K. (2014). Early indicators of change: Divergent climate envelopes between tree life stages imply range shifts in the western United States. Global Ecology and Biogeography, 23(2), 168-180. https://doi.org/10.1111/geb.12109.
Bradford, J. B., & Bell, D. M. (2017). A window of opportunity for climate-change adaptation: Easing tree mortality by reducing forest basal area. Frontiers in Ecology and the Environment, 15(1), 11-17. https://doi.org/10.1002/fee.1445.
Bradford, J. B., Shriver, R. K., Robles, M. D., McCauley, L. A., Woolley, T. J., Andrews, C. A., Crimmins, M., & Bell, D. M. (2022). Tree mortality response to drought-density interactions suggests opportunities to enhance drought resistance. Journal of Applied Ecology, 59(2), 549-559. https://doi.org/10.1111/1365-2664.14073.
Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., Belnap, J., Anderson, J. J., Myers, O. B., & Meyer, C. W. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15144-15148. https://doi.org/10.1073/pnas.0505734102.
Caswell, H. (2001). Matrix population models: Construction, analysis, and interpretation. Oxford University Press.
Clifford, K. R., Cravens, A. E., & Knapp, C. N. (2022). Responding to ecological transformation: Mental models, external constraints, and manager decision-making. Bioscience, 72(1), 57-70. https://doi.org/10.1093/biosci/biab086.
Crausbay, S. D., Sofaer, H. R., Cravens, A. E., Chaffin, B. C., Clifford, K. R., Gross, J. E., Knapp, C. N., Lawrence, D. J., Magness, D. R., Miller-Rushing, A. J., Schuurman, G. W., & Stevens-Rumann, C. S. (2022). A science agenda to inform natural resource management decisions in an era of ecological transformation. Bioscience, 72(1), 71-90. https://doi.org/10.1093/biosci/biab102.
D'Amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2013). Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23(8), 1735-1742. https://doi.org/10.1890/13-0677.1.
Davis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother, M. T., Parks, S. A., Sala, A., & Maneta, M. P. (2019). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6193-6198. https://doi.org/10.1073/pnas.1815107116.
Felton, A. J., Shriver, R. K., Stemkovski, M., Bradford, J. B., Suding, K. N., & Adler, P. B. (2022). Climate disequilibrium dominates uncertainty in long-term projections of primary productivity. Ecology Letters, 25(12), 2688-2698. https://doi.org/10.1111/ele.14132.
Flake, S. W. (2016). Stand dynamics during drought: Responses of adult trees, tree regeneration, and understory vegetation to multiyear drought in pinyon-juniper woodlands - ProQuest. https://www.proquest.com/openview/e8df1c84945c943077c31eaef258db8c/1?pq-origsite=gscholar&cbl=18750.
Flake, S. W., & Weisberg, P. J. (2019). Fine-scale stand structure mediates drought-induced tree mortality in pinyon-juniper woodlands. Ecological Applications, 29(2), e01831. https://doi.org/10.1002/eap.1831.
Floyd, M. L., Clifford, M., Cobb, N. S., Hanna, D., Delph, R., Ford, P., & Turner, D. (2009). Relationship of stand characteristics to drought-induced mortality in three Southwestern piñon-juniper woodlands. Ecological Applications, 19(5), 1223-1230. https://doi.org/10.1890/08-1265.1.
Floyd, M. L., Romme, W. H., & Hanna, D. D. (2021). Effects of recent wildfires in piñon-juniper woodlands of Mesa Verde National Park, Colorado, USA. Natural Areas Journal, 41(1), 28-38. https://doi.org/10.3375/043.041.0105.
Friggens, M. M., Warwell, M. V., Chambers, J. C., & Kitchen, S. G. (2012). Modeling and predicting vegetation response of Western USA grasslands, shrublands, and deserts to climate change. USDA Forest Service - General Technical Report RMRS-GTR.
Garfin, G., Jardine, A., Merideth, R., Black, M., & LeRoy, S. (2013). Assessment of climate change in the Southwest United States. Island Press. https://doi.org/10.5822/978-1-61091-484-0.
Grant, G. E., Tague, C. L., & Allen, C. D. (2013). Watering the forest for the trees: An emerging priority for managing water in forest landscapes. Frontiers in Ecology and the Environment, 11(6), 314-321. https://doi.org/10.1890/120209.
Guiterman, C. H., Gregg, R. M., Marshall, L. A. E., Beckmann, J. J., van Mantgem, P. J., Falk, D. A., Keeley, J. E., Caprio, A. C., Coop, J. D., Fornwalt, P. J., Haffey, C., Hagmann, R. K., Jackson, S. T., Lynch, A. M., Margolis, E. Q., Marks, C., Meyer, M. D., Safford, H., Syphard, A. D., … Stevens, J. T. (2022). Vegetation type conversion in the US Southwest: Frontline observations and management responses. Fire Ecology, 18(1), 6. https://doi.org/10.1186/s42408-022-00131-w.
Hartsell, J. A., Copeland, S. M., Munson, S. M., Butterfield, B. J., & Bradford, J. B. (2020). Gaps and hotspots in the state of knowledge of pinyon-juniper communities. Forest Ecology and Management, 455, 117628. https://doi.org/10.1016/j.foreco.2019.117628.
Houlahan, J. E., McKinney, S. T., Anderson, T. M., & McGill, B. J. (2017). The priority of prediction in ecological understanding. Oikos, 126(1), 1-7. https://doi.org/10.1111/oik.03726.
Hunter, M. E., Iniguez, J. M., & Lentile, L. B. (2011). Short- and long-term effects on fuels, forest structure, and wildfire potential from prescribed fire and resource benefit fire in southwestern forests, USA. Fire Ecology, 7(3), 108-121. https://doi.org/10.4996/fireecology.0703108.
IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029-1136). Cambridge University Press.
Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., Martínez-Vilalta, J., & Lloret, F. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23(9), 3742-3757. https://doi.org/10.1111/gcb.13636.
Kannenberg, S. A., Driscoll, A. W., Malesky, D., & Anderegg, W. R. L. (2021). Rapid and surprising dieback of Utah juniper in the southwestern USA due to acute drought stress. Forest Ecology and Management, 480, 118639. https://doi.org/10.1016/j.foreco.2020.118639.
Knutti, R., & Sedláček, J. (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3(4), Article 4. https://doi.org/10.1038/nclimate1716.
Lajtha, K., & Barnes, F. J. (1991). Carbon gain and water use in pinyon pine-juniper woodlands of northern New Mexico: Field versus phytotron chamber measurements. Tree Physiology, 9(1-2), 59-67. https://doi.org/10.1093/treephys/9.1-2.59.
Lehnert, S., Haffey, C., & Stortz, S. (2021). East Jemez landscape futures: Restoration strategy and climate adaptation plan. National Park Service.
Little, E. L. (1971). Atlas of United States trees. U.S. Dept. of Agriculture, Forest Service. https://doi.org/10.5962/bhl.title.130546.
Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R., & Brekke, L. (2015). A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950-2013. Scientific Data, 2(1), 150042. https://doi.org/10.1038/sdata.2015.42.
Loehman, R. A., Heyerdahl, E. K., Pederson, G. T., & McWethy, D. (2022). Climate and landscape controls on old-growth western juniper demography in the northern Great Basin, USA. Ecosystems, 26, 362-382. https://doi.org/10.1007/s10021-022-00762-9.
López, B. C., Holmgren, M., Sabaté, S., & Gracia, C. A. (2008). Estimating annual rainfall threshold for establishment of tree species in water-limited ecosystems using tree-ring data. Journal of Arid Environments, 72(5), 602-611. https://doi.org/10.1016/j.jaridenv.2007.10.012.
Lynch, A. J., Thompson, L. M., Beever, E. A., Cole, D. N., Engman, A. C., Hawkins Hoffman, C., Jackson, S. T., Krabbenhoft, T. J., Lawrence, D. J., Limpinsel, D., Magill, R. T., Melvin, T. A., Morton, J. M., Newman, R. A., Peterson, J. O., Porath, M. T., Rahel, F. J., Schuurman, G. W., Sethi, S. A., & Wilkening, J. L. (2021). Managing for RADical ecosystem change: Applying the Resist-Accept-Direct (RAD) framework. Frontiers in Ecology and the Environment, 19(8), 461-469. https://doi.org/10.1002/fee.2377.
Lynch, A. J., Thompson, L. M., Morton, J. M., Beever, E. A., Clifford, M., Limpinsel, D., Magill, R. T., Magness, D. R., Melvin, T. A., Newman, R. A., Porath, M. T., Rahel, F. J., Reynolds, J. H., Schuurman, G. W., Sethi, S. A., & Wilkening, J. L. (2022). RAD adaptive management for transforming ecosystems. Bioscience, 72(1), 45-56. https://doi.org/10.1093/biosci/biab091.
Magness, D. R., Hoang, L., Belote, R. T., Brennan, J., Carr, W., Stuart Chapin, F., III, Clifford, K., Morrison, W., Morton, J. M., & Sofaer, H. R. (2022). Management foundations for navigating ecological transformation by resisting, accepting, or directing social-ecological change. Bioscience, 72(1), 30-44. https://doi.org/10.1093/biosci/biab083.
Maurer, E. P., Brekke, L., Pruitt, T., & Duffy, P. B. (2007). Fine-resolution climate projections enhance regional climate change impact studies. Eos, Transactions American Geophysical Union, 88(47), 504. https://doi.org/10.1029/2007EO470006.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x.
McDowell, N. G., Grossiord, C., Adams, H. D., Pinzón-Navarro, S., Mackay, D. S., Breshears, D. D., Allen, C. D., Borrego, I., Dickman, L. T., Collins, A., Gaylord, M., McBranch, N., Pockman, W. T., Vilagrosa, A., Aukema, B., Goodsman, D., & Xu, C. (2019). Mechanisms of a coniferous woodland persistence under drought and heat. Environmental Research Letters, 14(4), 045014. https://doi.org/10.1088/1748-9326/ab0921.
McDowell, N. G., Michaletz, S. T., Bennett, K. E., Solander, K. C., Xu, C., Maxwell, R. M., & Middleton, R. S. (2018). Predicting chronic climate-driven disturbances and their mitigation. Trends in Ecology & Evolution, 33(1), 15-27. https://doi.org/10.1016/j.tree.2017.10.002.
Meddens, A. J. H., Hicke, J. A., Macalady, A. K., Buotte, P. C., Cowles, T. R., & Allen, C. D. (2015). Patterns and causes of observed piñon pine mortality in the southwestern United States. New Phytologist, 206(1), 91-97. https://doi.org/10.1111/nph.13193.
Menlove, J., Shaw, J. D., Witt, C., Werstak, C., DeRose, R. J., Goeking, S. A., Amacher, M. C., Morgan, T. A., & Sorenson, C. B. (2016). Nevada's forest resources, 2004-2013. Resource Bulletin RMRS-RB-22. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 167 p, 22. https://doi.org/10.2737/RMRS-RB-22.
Morris, L. R., & Rowe, R. J. (2014). Historical land use and altered habitats in the Great Basin. Journal of Mammalogy, 95(6), 1144-1156. https://doi.org/10.1644/13-MAMM-S-169.
Mote, P., Brekke, L., Duffy, P. B., & Maurer, E. (2011). Guidelines for constructing climate scenarios. Eos, Transactions American Geophysical Union, 92(31), 257-258. https://doi.org/10.1029/2011EO310001.
Negron, J. E., & Wilson, J. L. (2003). Attributes associated with probability of infestation by the pinon ips, Ips confusus, (Coleoptera: Scolytidae) in pinon pine, Pinus edulis. Western North American Naturalist, 63, 440-451.
Noel, A. R., Shriver, R. K., Crausbay, S. D., & Bradford, J. B. (2022). Pinyon-juniper basal area, climate and demographics data from National Forest Inventory plots and projected under future density and climate conditions. U.S. Geological Survey. https://doi.org/10.5066/P9FIGKFM.
Palmquist, K. A., Schlaepfer, D. R., Bradford, J. B., & Lauenroth, W. K. (2016). Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources. Ecology, 97(9), 2342-2354. https://doi.org/10.1002/ecy.1457.
Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., & McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292-297. https://doi.org/10.1038/nclimate1693.
Parmenter, R. R., Zlotin, R. I., Moore, D. I., & Myers, O. B. (2018). Environmental and endogenous drivers of tree mast production and synchrony in piñon-juniper-oak woodlands of New Mexico. Ecosphere, 9(8), e02360. https://doi.org/10.1002/ecs2.2360.
Peterson St-Laurent, G., Oakes, L. E., Cross, M., & Hagerman, S. (2021). R-R-T (resistance-resilience-transformation) typology reveals differential conservation approaches across ecosystems and time. Communications Biology, 4(1), Article 1. https://doi.org/10.1038/s42003-020-01556-2.
Petrie, M. D., Bradford, J. B., Hubbard, R. M., Lauenroth, W. K., Andrews, C. M., & Schlaepfer, D. R. (2017). Climate change may restrict dryland forest regeneration in the 21st century. Ecology, 98(6), 1548-1559. https://doi.org/10.1002/ecy.1791.
Redmond, M. D., Cobb, N. S., Clifford, M. J., & Barger, N. N. (2015). Woodland recovery following drought-induced tree mortality across an environmental stress gradient. Global Change Biology, 21(10), 3685-3695. https://doi.org/10.1111/gcb.12976.
Redmond, M. D., Weisberg, P. J., Cobb, N. S., & Clifford, M. J. (2018). Woodland resilience to regional drought: Dominant controls on tree regeneration following overstorey mortality. Journal of Ecology, 106(2), 625-639. https://doi.org/10.1111/1365-2745.12880.
Rehfeldt, G. E., Crookston, N. L., Sáenz-Romero, C., & Campbell, E. M. (2012). North American vegetation model for land-use planning in a changing climate: A solution to large classification problems. Ecological Applications, 22(1), 119-141. https://doi.org/10.1890/11-0495.1.
Romme, W. H., Allen, C. D., Bailey, J. D., Baker, W. L., Bestelmeyer, B. T., Brown, P. M., Eisenhart, K. S., Floyd, M. L., Huffman, D. W., Jacobs, B. F., Miller, R. F., Muldavin, E. H., Swetnam, T. W., Tausch, R. J., & Weisberg, P. J. (2009). Historical and modern disturbance regimes, stand structures, and landscape dynamics in piñon-juniper vegetation of the Western United States. Rangeland Ecology & Management, 62(3), 203-222. https://doi.org/10.2111/08-188R1.1.
Romme, W. H., Paul Whitefield, M., & Parker, C. (2021). Insights from recent fires into juniper savanna dynamics at Wupatki National Monument, Arizona, USA. Rangelands, 43(1), 9-16. https://doi.org/10.1016/j.rala.2020.10.003.
Rupp, D. E., Abatzoglou, J. T., Hegewisch, K. C., & Mote, P. W. (2013). Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. Journal of Geophysical Research: Atmospheres, 118(19), 10,884-10,906. https://doi.org/10.1002/jgrd.50843.
Schlaepfer, D. R., & Murphy, R. (2022). rSOILWAT2: An ecohydrological ecosystem-scale water balance simulation model. R package version 2.3.2. https://github.com/DrylandEcology/SOILWAT2.
Schuurman, G., Cat, H.-H., Cole, D., Lawrence, D., Morton, J., Magness, D., Cravens, A., Covington, S., O'Malley, R., & Fisichelli, N. (2020). Resist-accept-direct (RAD)-A framework for the 21st-century natural resource manager. National Park Service. https://doi.org/10.36967/nrr-2283597.
Schuurman, G. W., Cole, D. N., Cravens, A. E., Covington, S., Crausbay, S. D., Hoffman, C. H., Lawrence, D. J., Magness, D. R., Morton, J. M., Nelson, E. A., & O'Malley, R. (2022). Navigating ecological transformation: Resist-accept-direct as a path to a new resource management paradigm. Bioscience, 72(1), 16-29. https://doi.org/10.1093/biosci/biab067.
Shriver, R. K., Yackulic, C. B., Bell, D. M., & Bradford, J. B. (2021). Quantifying the demographic vulnerabilities of dry woodlands to climate and competition using rangewide monitoring data. Ecology, 102(8), e03425. https://doi.org/10.1002/ecy.3425.
Shriver, R. K., Yackulic, C. B., Bell, D. M., & Bradford, J. B. (2022). Dry forest decline is driven by both declining recruitment and increasing mortality in response to warm, dry conditions. Global Ecology and Biogeography, 31, 2259-2269. https://doi.org/10.1111/geb.13582.
Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243-252. https://doi.org/10.1111/ele.12889.
Stevens-Rumann, C. S., & Morgan, P. (2019). Tree regeneration following wildfires in the western US: A review. Fire Ecology, 15(1), 15. https://doi.org/10.1186/s42408-019-0032-1.
Stevens-Rumann, C. S., Prichard, S. J., Whitman, E., Parisien, M.-A., & Meddens, A. J. H. (2022). Considering regeneration failure in the context of changing climate and disturbance regimes in western North America. Canadian Journal of Forest Research, 52(10), 1281-1302. https://doi.org/10.1139/cjfr-2022-0054.
Thomas, K. A., Stauffer, B. A., & Jarchow, C. J. (2023). Decoupling of species and plant communities of the U.S. Southwest: A CCSM4 climate scenario example. Ecosphere, 14(2), e4414. https://doi.org/10.1002/ecs2.4414.
Thorne, J. H., Choe, H., Stine, P. A., Chambers, J. C., Holguin, A., Kerr, A. C., & Schwartz, M. W. (2018). Climate change vulnerability assessment of forests in the Southwest USA. Climatic Change, 148(3), 387-402. https://doi.org/10.1007/s10584-017-2010-4.
Tohver, I. M., Hamlet, A. F., & Lee, S.-Y. (2014). Impacts of 21st-century climate change on hydrologic extremes in the Pacific northwest region of North America. Journal of the American Water Resources Association, 50(6), 1461-1476. https://doi.org/10.1111/jawr.12199.
USFS. (2021). Drought causing juniper die-off in central and northern Arizona. https://www.fs.usda.gov/detail/kaibab/news-events/?cid=FSEPRD906836.
USFS. (2023). FS-1215A. Mature and old-growth forests: Definition, identification, and initial inventory on lands managed by the Forest Service and Bureau of Land Management. [Technical Report].
Van Gunst, K. J., Weisberg, P. J., Yang, J., & Fan, Y. (2016). Do denser forests have greater risk of tree mortality: A remote sensing analysis of density-dependent forest mortality. Forest Ecology and Management, 359, 19-32. https://doi.org/10.1016/j.foreco.2015.09.032.
Weisberg, P. J., Lingua, E., & Pillai, R. B. (2007). Spatial patterns of pinyon-juniper woodland expansion in Central Nevada. Rangeland Ecology & Management, 60(2), 115-124. https://doi.org/10.2111/05-224R2.1.
West, A. G., Hultine, K. R., Sperry, J. S., Bush, S. E., & Ehleringer, J. R. (2008). Transpiration and hydraulic strategies in a piñon-juniper woodland. Ecological Applications, 18(4), 911-927.
Williams, J. W. (2022). RAD: A paradigm, shifting. Bioscience, 72(1), 13-15. https://doi.org/10.1093/biosci/biab123.
معلومات مُعتمدة: North Central Climate Adaptation Science Center
فهرسة مساهمة: Keywords: climate adaptation; climate change; dry forests and woodlands; ecological transformation; forest management; tree mortality; tree recruitment
تواريخ الأحداث: Date Created: 20230529 Date Completed: 20230706 Latest Revision: 20230831
رمز التحديث: 20230901
DOI: 10.1111/gcb.16756
PMID: 37246831
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.16756