دورية أكاديمية

Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum.

التفاصيل البيبلوغرافية
العنوان: Formamide-based production of amines by metabolically engineering Corynebacterium glutamicum.
المؤلفون: Schwardmann LS; Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany., Wu T; Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany., Dransfeld AK; Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany., Lindner SN; Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany., Wendisch VF; Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany. volker.wendisch@uni-bielefeld.de.
المصدر: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Jul; Vol. 107 (13), pp. 4245-4260. Date of Electronic Publication: 2023 May 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer International, c1984-
مواضيع طبية MeSH: Lysine*/metabolism , Corynebacterium glutamicum*/metabolism, Amines/metabolism ; Amino Acids/metabolism ; Nitrogen/metabolism ; Metabolic Engineering
مستخلص: Formamide is rarely used as nitrogen source by microorganisms. Therefore, formamide and formamidase have been used as protection system to allow for growth under non-sterile conditions and for non-sterile production of acetoin, a product lacking nitrogen. Here, we equipped Corynebacterium glutamicum, a renowned workhorse for industrial amino acid production for 60 years, with formamidase from Helicobacter pylori 26695, enabling growth with formamide as sole nitrogen source. Thereupon, the formamide/formamidase system was exploited for efficient formamide-based production of the nitrogenous compounds L-glutamate, L-lysine, N-methylphenylalanine, and dipicolinic acid by transfer of the formamide/formamidase system to established producer strains. Stable isotope labeling verified the incorporation of nitrogen from formamide into biomass and the representative product L-lysine. Moreover, we showed ammonium leakage during formamidase-based access of formamide to be exploitable to support growth of formamidase-deficient C. glutamicum in co-cultivation and demonstrated that efficient utilization of formamide as sole nitrogen source benefitted from overexpression of formate dehydrogenase. KEY POINTS: • C. glutamicum was engineered to access formamide. • Formamide-based production of nitrogenous compounds was established. • Nitrogen cross-feeding supported growth of a formamidase-negative strain.
(© 2023. The Author(s).)
References: Bipp H, Kieczka H (2011) Formamides. In: Wiley-VCH (eds) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH, Weinheim, pp 720–741.  https://doi.org/10.1002/14356007.a12_001.pub2.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999. (PMID: 10.1006/abio.1976.9999942051)
Brown D, Hitchcock MJM, Katz E (1986) Purification and characterization of kynurenine formamidase activities from Streptomyces parvulus. Can J Microbiol 32:465–472. https://doi.org/10.1139/m86-086. (PMID: 10.1139/m86-0862425918)
Bury-Moné S, Thiberge J-M, Contreras M, Maitournam A, Labigne A, De Reuse H (2004) Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol Microbiol 53:623–638. https://doi.org/10.1111/j.1365-2958.2004.04137.x. (PMID: 10.1111/j.1365-2958.2004.04137.x15228539)
Calzadiaz-Ramirez L, Calvó-Tusell C, Stoffel GMM, Lindner SN, Osuna S, Erb TJ, Garcia-Borràs M, Bar-Even A, Acevedo-Rocha CG (2020) In vivo selection for formate dehydrogenases with high efficiency and specificity toward NADP + . ACS Catal 10:7512–7525. https://doi.org/10.1021/acscatal.0c01487. (PMID: 10.1021/acscatal.0c01487327337737384739)
Cetnar DP, Salis HM (2021) Systematic quantification of sequence and structural determinants controlling mRNA stability in bacterial operons. ACS Synth Biol 10:318–332. https://doi.org/10.1021/acssynbio.0c00471. (PMID: 10.1021/acssynbio.0c0047133464822)
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014. https://doi.org/10.1038/nbt1325. (PMID: 10.1038/nbt132517704766)
Cotton CA, Claassens NJ, Benito-Vaquerizo S, Bar-Even A (2020) Renewable methanol and formate as microbial feedstocks. Curr Opin Biotech 62:168–180. https://doi.org/10.1016/j.copbio.2019.10.002. (PMID: 10.1016/j.copbio.2019.10.00231733545)
Duca D, Rose DR, Glick BR (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microb 80:4640–4649. https://doi.org/10.1128/AEM.00649-14. (PMID: 10.1128/AEM.00649-14)
Dunn BE, Cohen H, Blaser MJ (1997) Helicobacter pylori. Clin Microbiol Rev 10:720–741. https://doi.org/10.1128/CMR.10.4.720. (PMID: 10.1128/CMR.10.4.7209336670172942)
Egelkamp R, Schneider D, Hertel R, Daniel R (2017) Nitrile-degrading bacteria isolated from compost. Front Environ Sci 5:56. https://doi.org/10.3389/fenvs.2017.00056.
Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum, 1st edn. CRC Press, Boca Raton. (PMID: 10.1201/9781420039696)
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke K-U, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828. https://doi.org/10.1099/13500872-140-8-1817. (PMID: 10.1099/13500872-140-8-18177522844)
Fournand D, Arnaud A (2001) Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity. J Appl Microbiol 91:381–393. https://doi.org/10.1046/j.1365-2672.2001.01378.x. (PMID: 10.1046/j.1365-2672.2001.01378.x11556902)
Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten H-M, Hesse H, Segu S, Hummel J, Köhl K, Willmitzer L (2011) Elemental formula annotation of polar and lipophilic metabolites using 13 C, 15 N and 34 S isotope labelling, in combination with high-resolution mass spectrometry. Plant J 68:364–376. https://doi.org/10.1111/j.1365-313X.2011.04682.x. (PMID: 10.1111/j.1365-313X.2011.04682.x21699588)
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318. (PMID: 10.1038/nmeth.131819363495)
Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142. https://doi.org/10.1186/1475-2859-11-142. (PMID: 10.1186/1475-2859-11-142231069433537687)
Guo Z-W, Ou X-Y, Liang S, Gao H-F, Zhang L-Y, Zong M-H, Lou W-Y (2020a) Recruiting a phosphite dehydrogenase/formamidase-driven antimicrobial contamination system in Bacillus subtilis for nonsterilized fermentation of acetoin. ACS Synth Biol 9:2537–2545. https://doi.org/10.1021/acssynbio.0c00312. (PMID: 10.1021/acssynbio.0c0031232786356)
Guo Z-W, Ou X-Y, Xu P, Gao H-F, Zhang L-Y, Zong M-H, Lou W-Y (2020b) Energy- and cost-effective non-sterilized fermentation of 2,3-butanediol by an engineered Klebsiella pneumoniae OU7 with an anti-microbial contamination system. Green Chem 22:8584–8593. https://doi.org/10.1039/D0GC03044A. (PMID: 10.1039/D0GC03044A)
Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/s0022-2836(83)80284-8. (PMID: 10.1016/s0022-2836(83)80284-86345791)
Henke NA, Krahn I, Wendisch VF (2021) Improved plasmid-based inducible and constitutive gene expression in Corynebacterium glutamicum. Microorganisms 9:204. https://doi.org/10.3390/microorganisms9010204. (PMID: 10.3390/microorganisms9010204334781267835838)
Hu M, Liu F, Wang Z, Shao M, Xu M, Yang T, Zhang R, Zhang X, Rao Z (2022) Sustainable isomaltulose production in Corynebacterium glutamicum by engineering the thermostability of sucrose isomerase coupled with one-step simplified cell immobilization. Front Microbiol 13:979079. https://doi.org/10.3389/fmicb.2022.979079. (PMID: 10.3389/fmicb.2022.979079360338399399683)
Hung C-L, Liu J-H, Chiu W-C, Huang S-W, Hwang J-K, Wang W-C (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. J Biol Chem 282:12220–12229. https://doi.org/10.1074/jbc.M609134200. (PMID: 10.1074/jbc.M60913420017307742)
Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977. https://doi.org/10.1046/j.1365-2958.2000.02073.x. (PMID: 10.1046/j.1365-2958.2000.02073.x10972815)
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25. https://doi.org/10.1016/S0168-1656(03)00154-8. (PMID: 10.1016/S0168-1656(03)00154-812948626)
Kampen WH (2014) Nutritional requirements in fermentation processes. In: Vogel HC, Todaro CM (eds) Fermentation and biochemical engineering handbook, 3rd edn. William Andrew Publishing, Boston, pp 37–57.  https://doi.org/10.1016/B978-1-4557-2553-3.00004-0.
Kennedy GL (2014) Formamide. In: Wexler P (ed) Encyclopedia of toxicology 3rd edn. Academic Press, Oxford, pp 657–658.  https://doi.org/10.1016/B978-0-12-386454-3.00023-3.
Kerbs A, Mindt M, Schwardmann L, Wendisch VF (2021) Sustainable production of N-methylphenylalanine by reductive methylamination of phenylpyruvate using engineered Corynebacterium glutamicum. Microorganisms 9:824. https://doi.org/10.3390/microorganisms9040824. (PMID: 10.3390/microorganisms9040824339245548070496)
Klaffl S, Eikmanns BJ (2010) Genetic and functional analysis of the soluble oxaloacetate decarboxylase from Corynebacterium glutamicum. J Bacteriol 192:2604–2612. https://doi.org/10.1128/JB.01678-09. (PMID: 10.1128/JB.01678-09202339222863558)
Kleiner D (1981) The transport of NH 3 and NH 4 + across biological membranes. Biochim Biophys Acta 639:41–52. https://doi.org/10.1016/0304-4173(81)90004-5. (PMID: 10.1016/0304-4173(81)90004-57030397)
Lee SY, Choi J, Han K, Song JY (1999) Removal of endotoxin during purification of poly(3-hydroxybutyrate) from Gram-negative bacteria. Appl Environ Microb 65:2762–2764. https://doi.org/10.1128/AEM.65.6.2762-2764.1999. (PMID: 10.1128/AEM.65.6.2762-2764.1999)
Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biot 69:1–8. https://doi.org/10.1007/s00253-005-0155-y. (PMID: 10.1007/s00253-005-0155-y)
Liu J, Zhang Y, Feng K, Liu X, Li J, Li C, Zhang P, Yu Q, Liu J, Shen G, He L (2020) Amidase, a novel detoxifying enzyme, is involved in cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval). Pestic Biochem Phys 163:31–38. https://doi.org/10.1016/j.pestbp.2019.10.001. (PMID: 10.1016/j.pestbp.2019.10.001)
Liu X-X, Li Y, Bai Z-H (2021) Corynebacterium glutamicum as a robust microbial factory for production of value-added proteins and small molecules: fundamentals and applications. In Microbial cell factories engineering for production of biomolecules; Singh, V (Ed), Academic Press; 235–263.
Lubitz D, Wendisch VF (2016) Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum. BMC Microbiol 16:235. https://doi.org/10.1186/s12866-016-0857-6. (PMID: 10.1186/s12866-016-0857-6277173255055667)
Mahenthiralingam E, Draper P, Davis EO, Colston MJ (1993) Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis. J Gen Microbiol 139:575–583. https://doi.org/10.1099/00221287-139-3-575. (PMID: 10.1099/00221287-139-3-5758473863)
Meng N, Shao J, Li H, Wang Y, Fu X, Liu C, Yu Y, Zhang B (2022) Electrosynthesis of formamide from methanol and ammonia under ambient conditions. Nat Commun 13:5452. https://doi.org/10.1038/s41467-022-33232-w. (PMID: 10.1038/s41467-022-33232-w361141969481544)
Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF (2018) One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 8:12895. https://doi.org/10.1038/s41598-018-31309-5. (PMID: 10.1038/s41598-018-31309-5301506446110843)
Mindt M, Heuser M, Wendisch VF (2019) Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum. Bioresource Technol 281:135–142. https://doi.org/10.1016/j.biortech.2019.02.084. (PMID: 10.1016/j.biortech.2019.02.084)
Müller T, Walter B, Wirtz A, Burkovski A (2006) Ammonium toxicity in bacteria. Curr Microbiol 52:400–406. https://doi.org/10.1007/s00284-005-0370-x. (PMID: 10.1007/s00284-005-0370-x16604417)
Newton GL, Av-Gay Y, Fahey RC (2000) A novel mycothiol-dependent detoxification pathway in Mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39:10739–10746. https://doi.org/10.1021/bi000356n. (PMID: 10.1021/bi000356n10978158)
Ou X-Y, Wu X-L, Peng F, Zeng Y-J, Li H-X, Xu P, Chen G, Guo Z-W, Yang J-G, Zong M-H, Lou W-Y (2019) Metabolic engineering of a robust Escherichia coli strain with a dual protection system. Biotechnol Bioeng 116:3333–3348. https://doi.org/10.1002/bit.27165. (PMID: 10.1002/bit.2716531502661)
Parish T, Mahenthiralingam E, Draper P, Davis EO, Colston EO (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143:2267–2276. https://doi.org/10.1099/00221287-143-7-2267. (PMID: 10.1099/00221287-143-7-22679245815)
Pérez-García F, Peters-Wendisch P, Wendisch VF (2016) Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Appl Microbiol Biot 100:8075–8090. https://doi.org/10.1007/s00253-016-7682-6. (PMID: 10.1007/s00253-016-7682-6)
Pérez-García F, Burgardt A, Kallman DR, Wendisch VF, Bar N (2021) Dynamic co-cultivation process of Corynebacterium glutamicum strains for the fermentative production of riboflavin. Fermentation 7:11. https://doi.org/10.3390/fermentation7010011. (PMID: 10.3390/fermentation7010011)
Rath M, Salas J, Parhy B, Norton R, Menakuru H, Sommerhalter M, Hatlstad G, Kwon J, Allan D, Vance C, Uhde-Stone C (2010) Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase. Plant Soil 334:137–150. https://doi.org/10.1007/s11104-010-0373-7. (PMID: 10.1007/s11104-010-0373-7)
Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M (2010) L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing. Microbiology 156:3180–3193. https://doi.org/10.1099/mic.0.040667-0. (PMID: 10.1099/mic.0.040667-020656783)
Reitzer LJ (1996) Sources of nitrogen and their utilization. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 380–390.
Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microb 74:6216–6222. https://doi.org/10.1128/AEM.00963-08. (PMID: 10.1128/AEM.00963-08)
Ryabchenko LE, Leonova TE, Shustikova TE, Gerasimova TV, Ivankova TA, Sidorenko KV, Yanenko AS (2020) Expression of the NADPH + -dependent formate-dehydrogenase gene from Pseudomonas increases lysine production in Corynebacterium glutamicum. Appl Biochem Microbiol 56:828–836. https://doi.org/10.1134/S0003683820080086. (PMID: 10.1134/S0003683820080086)
Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012) Formamide and the origin of life. Phys Life Rev 9:84–104. https://doi.org/10.1016/j.plrev.2011.12.002. (PMID: 10.1016/j.plrev.2011.12.00222196896)
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press.
Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biot 88:859–868. https://doi.org/10.1007/s00253-010-2778-x. (PMID: 10.1007/s00253-010-2778-x)
Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198. https://doi.org/10.1016/j.jbiotec.2010.07.009. (PMID: 10.1016/j.jbiotec.2010.07.00920638422)
Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biot 95:169–178. https://doi.org/10.1007/s00253-012-3956-9. (PMID: 10.1007/s00253-012-3956-9)
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF (2022) Metabolic engineering of Corynebacterium glutamicum for sustainable production of the aromatic dicarboxylic acid dipicolinic acid. Microorganisms 10:730. https://doi.org/10.3390/microorganisms10040730. (PMID: 10.3390/microorganisms10040730354567819024752)
Seffernick JL, de Souza ML, Sadowsky MJ, Wackett LP (2001) Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. J Bacteriol 183:2405–2410. https://doi.org/10.1128/JB.183.8.2405-2410.2001. (PMID: 10.1128/JB.183.8.2405-2410.20011127409795154)
Selão TT, Włodarczyk A, Nixon PJ, Norling B (2019) Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources. Metab Eng 54:255–263. https://doi.org/10.1016/j.ymben.2019.04.013. (PMID: 10.1016/j.ymben.2019.04.01331063791)
Sgobba E, Blöbaum L, Wendisch VF (2018a) Production of food and feed additives from non-food-competing feedstocks: valorizing n-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Front Microbiol 9:2046. https://doi.org/10.3389/fmicb.2018.02046. (PMID: 10.3389/fmicb.2018.02046303195546165865)
Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF (2018b) Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose. Bioresource Technol 260:302–310. https://doi.org/10.1016/j.biortech.2018.03.113. (PMID: 10.1016/j.biortech.2018.03.113)
Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H, Stephanopoulos G (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586. https://doi.org/10.1126/science.aaf6159. (PMID: 10.1126/science.aaf615927493184)
Siewe RM, Weil B, Krämer R (1995) Glutamine uptake by a sodium-dependent secondary transport system in Corynebacterium glutamicum. Arch Microbiol 164:98–103. https://doi.org/10.1007/BF02525314. (PMID: 10.1007/BF02525314)
Siewe RM, Weil B, Burkovski A, Eggeling L, Krämer R, Jahns T (1998) Urea uptake and urease activity in Corynebacterium glutamicum. Arch Microbiol 169:411–416. https://doi.org/10.1007/s002030050591. (PMID: 10.1007/s0020300505919560422)
Skouloubris S, Labigne A, De Reuse H (2001) The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues. Mol Microbiol 40:596–609. https://doi.org/10.1046/j.1365-2958.2001.02400.x. (PMID: 10.1046/j.1365-2958.2001.02400.x11359566)
Soriano-Maldonado P, Martínez-Gómez AI, Andújar-Sánchez M, Neira JL, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Martínez-Rodríguez S (2011) Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microb 77:5761–5769. https://doi.org/10.1128/AEM.00312-11. (PMID: 10.1128/AEM.00312-11)
Srivastava P, Deb JK (2005) Gene expression systems in corynebacteria. Protein Express Purif 40:221–229. https://doi.org/10.1016/j.pep.2004.06.017. (PMID: 10.1016/j.pep.2004.06.017)
Thatcher RC, Weaver TL (1976) Carbon-nitrogen cycling through microbial formamide metabolism. Science 192:1234–1235. https://doi.org/10.1126/science.192.4245.1234. (PMID: 10.1126/science.192.4245.123417771758)
Tsuge Y, Matsuzawa H (2021) Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microb Biotechnol 37:49. https://doi.org/10.1007/s11274-021-03007-4. (PMID: 10.1007/s11274-021-03007-4)
Uhde A, Youn J-W, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biot 97:1679–1687. https://doi.org/10.1007/s00253-012-4313-8. (PMID: 10.1007/s00253-012-4313-8)
Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17. https://doi.org/10.1007/s10482-006-9095-5. (PMID: 10.1007/s10482-006-9095-517016742)
van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biot 52:541–545. https://doi.org/10.1007/s002530051557. (PMID: 10.1007/s002530051557)
van Vliet AHM, Stoof J, Poppelaars SW, Bereswill S, Homuth G, Kist M, Kuipers EJ, Kusters JG (2003) Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori Fur Repressor. J Biol Chem 278:9052–9057. https://doi.org/10.1074/jbc.M207542200. (PMID: 10.1074/jbc.M20754220012499381)
Wang J, Yan D, Dixon R, Wang Y-P (2016) Deciphering the principles of bacterial nitrogen dietary preferences: a strategy for nutrient containment. mBio 7:e00792-16. https://doi.org/10.1128/mBio.00792-16. (PMID: 10.1128/mBio.00792-16274354614958250)
Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974. https://doi.org/10.1021/ac60252a045. (PMID: 10.1021/ac60252a045)
Wendisch VF, De Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096. https://doi.org/10.1128/JB.182.11.3088-3096.2000. (PMID: 10.1128/JB.182.11.3088-3096.20001080968694493)
Wendisch VF, Nampoothiri KM, Lee J-H (2022) Metabolic engineering for valorization of agri- and aqua-culture sidestreams for production of nitrogenous compounds by Corynebacterium glutamicum. Front Microbiol 13:835131. https://doi.org/10.3389/fmicb.2022.835131. (PMID: 10.3389/fmicb.2022.835131352111088861201)
Wendisch VF, Lee J-H (2020) Metabolic engineering in Corynebacterium glutamicum. In: Inui, M., Toyoda, K. (Eds.), Corynebacterium glutamicum - biology and biotechnology, microbiology monographs. Springer International Publishing, 287–322. https://doi.org/10.1007/978-3-030-39267-3_10.
Willison JC (1993) Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol Rev 10:1–38. https://doi.org/10.1111/j.1574-6968.1993.tb05862.x. (PMID: 10.1111/j.1574-6968.1993.tb05862.x8431308)
Witthoff S, Eggeling L, Bott M, Polen T (2012) Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate. Microbiology 158:2428–2439. https://doi.org/10.1099/mic.0.059196-0. (PMID: 10.1099/mic.0.059196-022767548)
Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, Bott M, Wendisch VF, Wittmann C (2021) Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 65:197–212. https://doi.org/10.1042/EBC20200134. (PMID: 10.1042/EBC20200134340965778313993)
You L, Page L, Feng X, Berla B, Pakrasi HB, Tang YJ (2012) Metabolic pathway confirmation and discovery through (13)C-labeling of proteinogenic amino acids. JoVE 26(59):e3583 https://doi.org/10.3791/3583.
Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 3:e201210004. https://doi.org/10.5936/csbj.201210004. (PMID: 10.5936/csbj.201210004246886643962153)
Zerkle AL, Mikhail S (2017) The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15:343–352. https://doi.org/10.1111/gbi.12228. (PMID: 10.1111/gbi.12228281589205412885)
Zhang B, Jiang Y, Li Z, Wang F, Wu X-Y (2020) Recent progress on chemical production from non-food renewable feedstocks using Corynebacterium glutamicum. Front Bioeng Biotechnol 8:606047.  https://doi.org/10.3389/fbioe.2020.606047.
معلومات مُعتمدة: ForceYield (031B0825C) Bundesministerium für Bildung und Forschung; BMBF project ForceYield (031B0825B) Bundesministerium für Bildung und Forschung
فهرسة مساهمة: Keywords: Amine production; Co-cultivation; Corynebacterium glutamicum; Formamidase; Formamide
المشرفين على المادة: K3Z4F929H6 (Lysine)
0 (Amines)
0 (Amino Acids)
N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20230529 Date Completed: 20230703 Latest Revision: 20230714
رمز التحديث: 20230714
مُعرف محوري في PubMed: PMC10313556
DOI: 10.1007/s00253-023-12592-3
PMID: 37246985
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0614
DOI:10.1007/s00253-023-12592-3