دورية أكاديمية

Identification of a diketopiperazine-based O-GlcNAc transferase inhibitor sensitizing hepatocellular carcinoma to CDK9 inhibition.

التفاصيل البيبلوغرافية
العنوان: Identification of a diketopiperazine-based O-GlcNAc transferase inhibitor sensitizing hepatocellular carcinoma to CDK9 inhibition.
المؤلفون: Shan X; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Jiang R; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, China., Gou D; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Xiang J; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Zhou P; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Xia J; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Wang K; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Huang A; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Tang N; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China., Huang L; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, China.
المصدر: The FEBS journal [FEBS J] 2023 Sep; Vol. 290 (18), pp. 4543-4561. Date of Electronic Publication: 2023 Jun 05.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
مواضيع طبية MeSH: Carcinoma, Hepatocellular*/drug therapy , Carcinoma, Hepatocellular*/genetics , Liver Neoplasms*/drug therapy , Liver Neoplasms*/genetics, Humans ; N-Acetylglucosaminyltransferases/genetics ; N-Acetylglucosaminyltransferases/metabolism ; Glycosylation ; Protein Processing, Post-Translational ; Cyclin-Dependent Kinase 9/genetics ; Cyclin-Dependent Kinase 9/metabolism
مستخلص: O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) is an important post-translational and metabolic process in cells that is implicated in a wide range of physiological processes. O-GlcNAc transferase (OGT) is ubiquitously present in cells and is the only enzyme that catalyses the transfer of O-GlcNAc to nucleocytoplasmic proteins. Aberrant glycosylation by OGT has been linked to a variety of diseases including cancer, neurodegenerative disorders and diabetes. Previously, we and others demonstrated that O-GlcNAcylation is notably elevated in hepatocellular carcinoma (HCC). The overexpression of O-GlcNAcylation promotes cancer progression and metastasis. Here, we report the identification of HLY838, a novel diketopiperazine-based OGT inhibitor with the ability to induce a global decrease in cellular O-GlcNAc. HLY838 enhances the in vitro and in vivo anti-HCC activity of CDK9 inhibitor by downregulating c-Myc and downstream E2F1 expression. Mechanistically, c-Myc is regulated by the CDK9 at the transcript level, and stabilized by OGT at the protein level. This work therefore demonstrates that HLY838 potentiates the antitumor responses of CDK9 inhibitor, providing an experimental rationale for developing OGT inhibitor as a sensitizing agent in cancer therapeutics.
(© 2023 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
References: Song T, Zou Q, Yan Y, Lv S, Li N, Zhao X, Ma X, Liu H, Tang B & Sun L (2021) DOT1L O-GlcNAcylation promotes its protein stability and MLL-fusion leukemia cell proliferation. Cell Rep 36, 109739.
Ma J, Hou C & Wu C (2022) Demystifying the O-GlcNAc code: a systems view. Chem Rev 122, 15822-15864.
Balana AT, Levine PM, Craven TW, Mukherjee S, Pedowitz NJ, Moon SP, Takahashi TT, Becker CFW, Baker D & Pratt MR (2021) O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity. Nat Chem 13, 441-450.
Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, Vosseller K & Reginato MJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29, 2831-2842.
Webster DM, Teo CF, Sun Y, Wloga D, Gay S, Klonowski KD, Wells L & Dougan ST (2009) O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development. BMC Dev Biol 9, 28.
Chatham JC, Zhang J & Wende AR (2021) Role of O-linked N-acetylglucosamine protein modification in cellular (patho) physiology. Physiol Rev 101, 427-493.
Itkonen HM, Loda M & Mills IG (2021) O-GlcNAc transferase - an auxiliary factor or a full-blown oncogene? Mol Cancer Res 19, 555-564.
Shi Q, Shen Q, Liu Y, Shi Y, Huang W, Wang X, Li Z, Chai Y, Wang H, Hu X et al. (2022) Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell 40, 1207-1222.e10.
Park J, Ha HJ, Chung ES, Baek SH, Cho Y, Kim HK, Han J, Sul JH, Lee J, Kim E et al. (2021) O-GlcNAcylation ameliorates the pathological manifestations of Alzheimer's disease by inhibiting necroptosis. Sci Adv 7, eabd3207.
Peterson SB & Hart GW (2016) New insights: a role for O-GlcNAcylation in diabetic complications. Crit Rev Biochem Mol Biol 51, 150-161.
Issad T, Masson E & Pagesy P (2010) O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab 36, 423-435.
Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, Gao Q, Zhang W, Tuo L, Pan X et al. (2021) Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest 131, e144703.
Wu N, Jiang M, Han Y, Liu H, Chu Y, Liu H, Cao J, Hou Q, Zhao Y, Xu B et al. (2019) O-GlcNAcylation promotes colorectal cancer progression by regulating protein stability and potential catcinogenic function of DDX5. J Cell Mol Med 23, 1354-1362.
Liu YY, Liu HY, Yu TJ, Lu Q, Zhang FL, Liu GY, Shao ZM & Li DQ (2022) O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-beta signaling to breast cancer progression. Cell Death Differ 29, 861-873.
Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, Svindland A, Schlomm T & Mills IG (2013) O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res 73, 5277-5287.
Peng C, Zhu Y, Zhang W, Liao Q, Chen Y, Zhao X, Guo Q, Shen P, Zhen B, Qian X et al. (2017) Regulation of the hippo-YAP pathway by glucose sensor O-GlcNAcylation. Mol Cell 68, 591-604.
Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y et al. (2017) The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun 8, 15280.
Li X, Wu Z, He J, Jin Y, Chu C, Cao Y, Gu F, Wang H, Hou C, Liu X et al. (2021) OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene 40, 4859-4871.
Ma Z, Vocadlo DJ & Vosseller K (2013) Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem 288, 15121-15130.
Liu Q, Tao T, Liu F, Ni R, Lu C & Shen A (2016) Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma. Exp Cell Res 349, 230-238.
Chu Y, Jiang M, Wu N, Xu B, Li W, Liu H, Su S, Shi Y, Liu H, Gao X et al. (2020) O-GlcNAcylation of SIX1 enhances its stability and promotes hepatocellular carcinoma proliferation. Theranostics 10, 9830-9842.
Xu W, Zhang X, Wu JL, Fu L, Liu K, Liu D, Chen GG, Lai PB, Wong N & Yu J (2017) O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress. J Hepatol 67, 310-320.
Ma J, Wu C & Hart GW (2021) Analytical and biochemical perspectives of protein O-GlcNAcylation. Chem Rev 121, 1513-1581.
Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, Duveau DY, Tan ZW, Thomas CJ & Walker S (2015) A small molecule that inhibits OGT activity in cells. ACS Chem Biol 10, 1392-1397.
Martin SES, Tan ZW, Itkonen HM, Duveau DY, Paulo JA, Janetzko J, Boutz PL, Tork L, Moss FA, Thomas CJ et al. (2018) Structure-based evolution of low nanomolar O-GlcNAc transferase inhibitors. J Am Chem Soc 140, 13542-13545.
Liu TW, Zandberg WF, Gloster TM, Deng L, Murray KD, Shan X & Vocadlo DJ (2018) Metabolic inhibitors of O-GlcNAc transferase that act in vivo implicate decreased O-GlcNAc levels in leptin-mediated nutrient sensing. Angew Chem Int Ed Engl 57, 7644-7648.
Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L & Vocadlo DJ (2011) Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 7, 174-181.
Hu CW, Worth M, Fan D, Li B, Li H, Lu L, Zhong X, Lin Z, Wei L, Ge Y et al. (2017) Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nat Chem Biol 13, 1267-1273.
Worth M, Hu CW, Li H, Fan D, Estevez A, Zhu D, Wang A & Jiang J (2019) Targeted covalent inhibition of O-GlcNAc transferase in cells. Chem Commun (Camb) 55, 13291-13294.
Lee SJ & Kwon OS (2020) O-GlcNAc transferase inhibitor synergistically enhances doxorubicin-induced apoptosis in HepG2 cells. Cancers (Basel) 12, 3154.
Itkonen HM, Poulose N, Steele RE, Martin SES, Levine ZG, Duveau DY, Carelli R, Singh R, Urbanucci A, Loda M et al. (2020) Inhibition of O-GlcNAc transferase renders prostate cancer cells dependent on CDK9. Mol Cancer Res 18, 1512-1521.
Barkovskaya A, Seip K, Hilmarsdottir B, Maelandsmo GM, Moestue SA & Itkonen HM (2019) O-GlcNAc transferase inhibition differentially affects breast cancer subtypes. Sci Rep 9, 5670.
Liu Y, Cao Y, Pan X, Shi M, Wu Q, Huang T, Jiang H, Li W & Zhang J (2018) O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance. Cell Death Dis 9, 485.
Gondane A, Poulose N, Walker S, Mills IG & Itkonen HM (2022) O-GlcNAc transferase maintains metabolic homeostasis in response to CDK9 inhibition. Glycobiology 32, 751-759.
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan HY, Shen DL, Russell CC et al. (2020) A direct fluorescent activity assay for glycosyltransferases enables convenient high-throughput screening: application to O-GlcNAc transferase. Angew Chem Int Ed Engl 59, 9601-9609.
Loi EM, Tomasic T, Balsollier C, van Eekelen K, Weiss M, Gobec M, Alteen MG, Vocadlo DJ, Pieters RJ & Anderluh M (2022) Discovery of a new drug-like series of OGT inhibitors by virtual screening. Molecules 27, 1996.
Feng BY, Simeonov A, Jadhav A, Babaoglu K, Inglese J, Shoichet BK & Austin CP (2007) A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem 50, 2385-2390.
Huang CH, Lujambio A, Zuber J, Tschaharganeh DF, Doran MG, Evans MJ, Kitzing T, Zhu N, de Stanchina E, Sawyers CL et al. (2014) CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes Dev 28, 1800-1814.
Sodi VL, Khaku S, Krutilina R, Schwab LP, Vocadlo DJ, Seagroves TN & Reginato MJ (2015) mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer. Mol Cancer Res 13, 923-933.
Olson CM, Jiang B, Erb MA, Liang Y, Doctor ZM, Zhang Z, Zhang T, Kwiatkowski N, Boukhali M, Green JL et al. (2018) Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 14, 163-170.
Lucking U, Kosemund D, Bohnke N, Lienau P, Siemeister G, Denner K, Bohlmann R, Briem H, Terebesi I, Bomer U et al. (2021) Changing for the better: discovery of the highly potent and selective CDK9 inhibitor VIP152 suitable for once weekly intravenous dosing for the treatment of cancer. J Med Chem 64, 11651-11674.
Xia P, Zhang H, Xu K, Jiang X, Gao M, Wang G, Liu Y, Yao Y, Chen X, Ma W et al. (2021) MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis 12, 691.
Blake DR, Vaseva AV, Hodge RG, Kline MP, Gilbert TSK, Tyagi V, Huang D, Whiten GC, Larson JE, Wang X et al. (2019) Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Sci Signal 12, eaav7259.
Balsollier C, Tomasic T, Yasini D, Bijkerk S, Anderluh M & Pieters RJ (2023) Design of OSMI-4 analogs using scaffold hopping: investigating the importance of the uridine mimic in the binding of OGT inhibitors. ChemMedChem 18, e202300001.
Loi EM, Weiss M, Pajk S, Gobec M, Tomasic T, Pieters RJ & Anderluh M (2020) Intracellular hydrolysis of small-molecule O-linked N-acetylglucosamine transferase inhibitors differs among cells and is not required for its inhibition. Molecules 25, 3381.
Lin CH, Liao CC, Chen MY & Chou TY (2021) Feedback regulation of O-GlcNAc transferase through translation control to maintain intracellular O-GlcNAc homeostasis. Int J Mol Sci 22, 3463.
Levine ZG, Potter SC, Joiner CM, Fei GQ, Nabet B, Sonnett M, Zachara NE, Gray NS, Paulo JA & Walker S (2021) Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc Natl Acad Sci USA 118, e2016778118.
Satriano L, Lewinska M, Rodrigues PM, Banales JM & Andersen JB (2019) Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol 16, 748-766.
Liu R, Gou D, Xiang J, Pan X, Gao Q, Zhou P, Liu Y, Hu J, Wang K & Tang N (2021) O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis. Oncogene 40, 6707-6719.
Yao J, Wang J, Xu Y, Guo Q, Sun Y, Liu J, Li S, Guo Y & Wei L (2022) CDK9 inhibition blocks the initiation of PINK1-PRKN-mediated mitophagy by regulating the SIRT1-FOXO3-BNIP3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma. Autophagy 18, 1879-1897.
Yao JY, Xu S, Sun YN, Xu Y, Guo QL & Wei LB (2022) Novel CDK9 inhibitor oroxylin A promotes wild-type P53 stability and prevents hepatocellular carcinoma progression by disrupting both MDM2 and SIRT1 signaling. Acta Pharmacol Sin 43, 1033-1045.
Burén S, Gomes AL, Teijeiro A, Fawal M-A, Yilmaz M, Tummala KS, Perez M, Rodriguez-Justo M, Campos-Olivas R, Megías D et al. (2016) Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms. Cancer Cell 30, 290-307.
Boffo S, Damato A, Alfano L & Giordano A (2018) CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 37, 36.
Gross BJ, Kraybill BC & Walker S (2005) Discovery of O-GlcNAc transferase inhibitors. J Am Chem Soc 127, 14588-14589.
Huang L, Li H, Li L, Niu L, Seupel R, Wu C, Cheng W, Chen C, Ding B, Brennan PE et al. (2019) Discovery of pyrrolo[3,2-d]pyrimidin-4-one derivatives as a new class of potent and cell-active inhibitors of P300/CBP-associated factor bromodomain. J Med Chem 62, 4526-4542.
Hu J, Gao Q, Yang Y, Xia J, Zhang W, Chen Y, Zhou Z, Chang L, Hu Y, Zhou H et al. (2021) Hexosamine biosynthetic pathway promotes the antiviral activity of SAMHD1 by enhancing O-GlcNAc transferase-mediated protein O-GlcNAcylation. Theranostics 11, 805-823.
Li D, Yao Y, Rao Y, Huang X, Wei L, You Z, Zheng G, Hou X, Su Y, Varghese Z et al. (2022) Cholesterol sensor SCAP contributes to sorafenib resistance by regulating autophagy in hepatocellular carcinoma. J Exp Clin Cancer Res 41, 116.
فهرسة مساهمة: Keywords: CDK9; O-GlcNAc transferase; c-Myc; hepatocellular carcinoma; inhibitor
المشرفين على المادة: EC 2.4.1.- (O-GlcNAc transferase)
EC 2.4.1.- (N-Acetylglucosaminyltransferases)
EC 2.7.11.22 (CDK9 protein, human)
EC 2.7.11.22 (Cyclin-Dependent Kinase 9)
تواريخ الأحداث: Date Created: 20230529 Date Completed: 20230921 Latest Revision: 20230921
رمز التحديث: 20240514
DOI: 10.1111/febs.16877
PMID: 37247228
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4658
DOI:10.1111/febs.16877