دورية أكاديمية

Delivery of low-density lipoprotein from endocytic carriers to mitochondria supports steroidogenesis.

التفاصيل البيبلوغرافية
العنوان: Delivery of low-density lipoprotein from endocytic carriers to mitochondria supports steroidogenesis.
المؤلفون: Zhou YX; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China., Wei J; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China., Deng G; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China., Hu A; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China., Sun PY; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China., Zhao X; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China., Song BL; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China. blsong@whu.edu.cn., Luo J; College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China. jieluo@whu.edu.cn.
المصدر: Nature cell biology [Nat Cell Biol] 2023 Jul; Vol. 25 (7), pp. 937-949. Date of Electronic Publication: 2023 Jun 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Macmillan Magazines Ltd., [1999-
مواضيع طبية MeSH: Cholesterol*/metabolism , Mitochondria*/metabolism, Cholesterol, LDL ; Membrane Proteins/metabolism ; Hormones
مستخلص: The low-density lipoprotein (LDL) is a major cholesterol carrier in circulation and is internalized into cells through LDL receptor (LDLR)-mediated endocytosis. The LDLR protein is highly expressed in the steroidogenic organs and LDL cholesterol is an important source for steroidogenesis. Cholesterol must be transported into the mitochondria, where steroid hormone biosynthesis initiates. However, how LDL cholesterol is conveyed to the mitochondria is poorly defined. Here, through genome-wide small hairpin RNA screening, we find that the outer mitochondrial membrane protein phospholipase D6 (PLD6), which hydrolyses cardiolipin to phosphatidic acid, accelerates LDLR degradation. PLD6 promotes the entrance of LDL and LDLR into the mitochondria, where LDLR is degraded by mitochondrial proteases and LDL-carried cholesterol is used for steroid hormone biosynthesis. Mechanistically, the outer mitochondrial membrane protein CISD2 binds to the cytosolic tail of LDLR and tethers LDLR + vesicles to the mitochondria. The fusogenic lipid phosphatidic acid generated by PLD6 facilitates the membrane fusion of LDLR + vesicles with the mitochondria. This intracellular transport pathway of LDL-LDLR bypasses the lysosomes and delivers cholesterol to the mitochondria for steroidogenesis.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Hu, J., Zhang, Z., Shen, W.-J. & Azhar, S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. 7, 47 (2010). (PMID: 10.1186/1743-7075-7-47)
Cole, T. J., Short, K. L. & Hooper, S. B. The science of steroids. Semin. Fetal Neonatal Med. 24, 170–175 (2019). (PMID: 3114716210.1016/j.siny.2019.05.005)
Ghayee, H. K. & Auchus, R. J. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev. Endocr. Metab. Disord. 8, 289–300 (2007). (PMID: 1792612910.1007/s11154-007-9052-2)
Tilokani, L., Nagashima, S., Paupe, V. & Prudent, J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62, 341–360 (2018). (PMID: 30030364605671510.1042/EBC20170104)
Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117 (2016). (PMID: 2675434010.1016/j.tem.2015.12.001)
Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212, 531–544 (2016). (PMID: 26903540477249910.1083/jcb.201508099)
Santel, A. et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763–2774 (2003). (PMID: 1275937610.1242/jcs.00479)
Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535–6546 (2004). (PMID: 1557241310.1242/jcs.01565)
Cipolat, S., Martins de Brito, O., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA 101, 15927–15932 (2004). (PMID: 1550964952876910.1073/pnas.0407043101)
Choi, S. Y. et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 8, 1255–1262 (2006). (PMID: 1702857910.1038/ncb1487)
Huang, H. & Frohman, M. A. Lipid signaling on the mitochondrial surface. Biochim. Biophys. Acta 1791, 839–844 (2009). (PMID: 19540356274907310.1016/j.bbalip.2009.05.012)
Zhukovsky, M. A., Filograna, A., Luini, A., Corda, D. & Valente, C. Phosphatidic acid in membrane rearrangements. FEBS Lett. 593, 2428–2451 (2019). (PMID: 3136576710.1002/1873-3468.13563)
Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986). (PMID: 351331110.1126/science.3513311)
Luo, J., Jiang, L., Yang, H. & Song, B. L. Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic 18, 209–217 (2017). (PMID: 2819191510.1111/tra.12471)
Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020). (PMID: 3184847210.1038/s41580-019-0190-7)
Chu, B. B. et al. Cholesterol transport through lysosome–peroxisome membrane contacts. Cell 161, 291–306 (2015). (PMID: 2586061110.1016/j.cell.2015.02.019)
Illingworth, D. R., Orwoll, E. S. & Connor, W. E. Impaired cortisol secretion in abetalipoproteinemia. J. Clin. Endocr. Metab. 50, 977–979 (1980). (PMID: 624614010.1210/jcem-50-5-977)
Abreu, J. M. et al. Dyslipidemia’s influence on the secretion ovarian’s steroids in female mice. Res. Soc. Dev. 10, e298101321369 (2021). (PMID: 10.33448/rsd-v10i13.21369)
Guo, T. et al. Low-density lipoprotein receptor affects the fertility of female mice. Reprod. Fertil. Dev. 27, 1222–1232 (2015). (PMID: 2502376110.1071/RD13436)
Steinfeld, K. et al. Low testosterone in ApoE/LDL receptor double-knockout mice is associated with rarefied testicular capillaries together with fewer and smaller Leydig cells. Sci. Rep. 8, 5424 (2018). (PMID: 29615651588294110.1038/s41598-018-23631-9)
Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002). (PMID: 1199439915096810.1172/JCI0215593)
Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003). (PMID: 1273069710.1038/ng1161)
Wang, Y., Huang, Y., Hobbs, H. H. & Cohen, J. C. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J. Lipid Res. 53, 1932–1943 (2012). (PMID: 22764087341323210.1194/jlr.M028563)
Wang, J.-K. et al. Ablation of plasma prekallikrein decreases low-density lipoprotein cholesterol by stabilizing low-density lipoprotein receptor and protects against atherosclerosis. Circulation 145, 675–687 (2022). (PMID: 3518970310.1161/CIRCULATIONAHA.121.056491)
Zelcer, N., Hong, C., Boyadjian, R. & Tontonoz, P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325, 100–104 (2009). (PMID: 19520913277752310.1126/science.1168974)
Huang, H. et al. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376–387 (2011). (PMID: 21397848306140210.1016/j.devcel.2011.01.004)
Baba, T. et al. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J. Biol. Chem. 289, 11497–11511 (2014). (PMID: 24599962403628510.1074/jbc.M113.531921)
Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79–87 (2005). (PMID: 1568806910.1038/nrm1552)
Quiros, P. M., Langer, T. & Lopez-Otin, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16, 345–359 (2015). (PMID: 2597055810.1038/nrm3984)
Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 (2017). (PMID: 2830174010.1146/annurev-biochem-060815-014352)
Li, X. et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol. Cell 61, 705–719 (2016). (PMID: 26942675488878410.1016/j.molcel.2016.02.009)
Wang, T. et al. SENP1–Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol. Cell 75, 823–834.e5 (2019). (PMID: 3130200110.1016/j.molcel.2019.06.008)
Ruan, L. et al. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443–446 (2017). (PMID: 28241148579391710.1038/nature21695)
Li, Y. et al. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity. EMBO J. 38, e98786 (2019). (PMID: 3059155510.15252/embj.201798786)
Wei, Z., Su, W., Lou, H., Duan, S. & Chen, G. Trafficking pathway between plasma membrane and mitochondria via clathrin-mediated endocytosis. J. Mol. Cell. Biol. 10, 539–548 (2018). (PMID: 3038324310.1093/jmcb/mjy060)
Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012). (PMID: 2321770910.1016/j.cell.2012.11.001)
Chen, Y. F. et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 23, 1183–1194 (2009). (PMID: 19451219268553110.1101/gad.1779509)
Chen, P. L. et al. Vesicular transport mediates the uptake of cytoplasmic proteins into mitochondria in Drosophila melanogaster. Nat. Commun. 11, 2592 (2020). (PMID: 32444642724474410.1038/s41467-020-16335-0)
Strappazzon, F. et al. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ. 22, 419–432 (2015). (PMID: 2521594710.1038/cdd.2014.139)
Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5, 90 (2017). (PMID: 29034233562682810.3389/fcell.2017.00090)
Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Cardiolipin and mitochondrial function in health and disease. Antioxid. Redox Signal. 20, 1925–1953 (2014). (PMID: 2409409410.1089/ars.2013.5280)
Wasilewski, M. et al. Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr. Biol. 22, 1228–1234 (2012). (PMID: 22658590339683910.1016/j.cub.2012.04.054)
Elustondo, P., Martin, L. A. & Karten, B. Mitochondrial cholesterol import. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 90–101 (2017). (PMID: 2756511210.1016/j.bbalip.2016.08.012)
Courtney, K. C. et al. C24 sphingolipids govern the transbilayer asymmetry of cholesterol and lateral organization of model and live-cell plasma membranes. Cell Rep. 24, 1037–1049 (2018). (PMID: 3004497110.1016/j.celrep.2018.06.104)
Venugopal, S. et al. Plasma membrane origin of the steroidogenic pool of cholesterol used in hormone-induced acute steroid formation in Leydig cells. J. Biol. Chem. 291, 26109–26125 (2016). (PMID: 27815506520708010.1074/jbc.M116.740928)
Sandhu, J. et al. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell 175, 514–529.e20 (2018). (PMID: 30220461646968510.1016/j.cell.2018.08.033)
Rigotti, A., Miettinen, H. E. & Krieger, M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr. Rev. 24, 357–387 (2003). (PMID: 1278880410.1210/er.2001-0037)
Chen, M. et al. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs. Cell Death Differ. 25, 1905–1920 (2018). (PMID: 29523874621948310.1038/s41418-018-0092-9)
Ipsaro, J. J., Haase, A. D., Knott, S. R., Joshua-Tor, L. & Hannon, G. J. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491, 279–283 (2012). (PMID: 23064227349367810.1038/nature11502)
Watanabe, T. et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 20, 364–375 (2011). (PMID: 21397847306220410.1016/j.devcel.2011.01.005)
Curley, M. et al. A young testicular microenvironment protects Leydig cells against age-related dysfunction in a mouse model of premature aging. FASEB J. 33, 978–995 (2019). (PMID: 3008044310.1096/fj.201800612R)
Shen, Z. Q. et al. CISD2 maintains cellular homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118954 (2021). (PMID: 3342261710.1016/j.bbamcr.2021.118954)
Kameoka, S., Adachi, Y., Okamoto, K., Iijima, M. & Sesaki, H. Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 28, 67–76 (2018). (PMID: 2891191310.1016/j.tcb.2017.08.011)
Barneda, D. et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. eLife 4, e07485 (2015). (PMID: 26609809475575010.7554/eLife.07485)
Fei, W. et al. A role for phosphatidic acid in the formation of ‘supersized’ lipid droplets. PLoS Genet. 7, e1002201 (2011). (PMID: 21829381314562310.1371/journal.pgen.1002201)
Hoppins, S. et al. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol. Cell 41, 150–160 (2011). (PMID: 21255726307206810.1016/j.molcel.2010.11.030)
Meeusen, S. et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383–395 (2006). (PMID: 1705543810.1016/j.cell.2006.09.021)
Zhao, H. et al. AMPK-mediated activation of MCU stimulates mitochondrial Ca 2+ entry to promote mitotic progression. Nat. Cell Biol. 21, 476–486 (2019). (PMID: 3085858110.1038/s41556-019-0296-3)
معلومات مُعتمدة: 91954203 National Natural Science Foundation of China (National Science Foundation of China); 32021003 National Natural Science Foundation of China (National Science Foundation of China); 32293203 National Natural Science Foundation of China (National Science Foundation of China); 2018YFA0800703 Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
المشرفين على المادة: 0 (Cholesterol, LDL)
97C5T2UQ7J (Cholesterol)
0 (Membrane Proteins)
0 (Hormones)
تواريخ الأحداث: Date Created: 20230605 Date Completed: 20230717 Latest Revision: 20231116
رمز التحديث: 20240628
DOI: 10.1038/s41556-023-01160-6
PMID: 37277481
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4679
DOI:10.1038/s41556-023-01160-6