دورية أكاديمية

Integration of olfactory and auditory cues eliciting parental behavior.

التفاصيل البيبلوغرافية
العنوان: Integration of olfactory and auditory cues eliciting parental behavior.
المؤلفون: McRae BR; Department of Neuroscience, Columbia University, New York, New York, USA.; Mortimer B. Zuckerman Mind Brain and Behavior Institute, New York, New York, USA., Andreu V; Department of Neuroscience, Columbia University, New York, New York, USA.; Mortimer B. Zuckerman Mind Brain and Behavior Institute, New York, New York, USA., Marlin BJ; Department of Neuroscience, Columbia University, New York, New York, USA.; Mortimer B. Zuckerman Mind Brain and Behavior Institute, New York, New York, USA.; Department of Psychology, Columbia University, New York, New York, USA.
المصدر: Journal of neuroendocrinology [J Neuroendocrinol] 2023 Jul; Vol. 35 (7), pp. e13307. Date of Electronic Publication: 2023 Jun 05.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley & Sons Country of Publication: United States NLM ID: 8913461 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2826 (Electronic) Linking ISSN: 09538194 NLM ISO Abbreviation: J Neuroendocrinol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
مواضيع طبية MeSH: Smell* , Cues*, Animals ; Brain ; Mammals ; Rodentia ; Auditory Perception
مستخلص: Parental care is crucial for the survival of all mammalian species. Given the evolutionary importance of parenting, this behavioral repertoire must be supported by circuitry that is innate but also capable of learning and flexibility - adjusting to changing environmental demands. In rodents, parental care is triggered by the perception of cues emitted by a pup. Caregiver-pup interactions are often composed of multimodal sensory stimuli that require caregivers to integrate across sensory modalities. In this review, we focus on two sensory modalities essential for the parental experience: smell and hearing. We examine how smell and hearing are combined with other senses to identify offspring in need of care. Understanding how multimodal stimuli are integrated in the caregiver brain to inform parental behavior is an important step in understanding the circuitry that underlies this complex and crucial behavioral repertoire. In this review, we will discuss recent advances in the field of rodent parental behavior, highlighting studies that have begun to disentangle the neural circuitry that processes the multisensory cues that are involved in caregiver-offspring interactions.
(© 2023 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.)
References: Beach FA, Jaynes J. Studies of maternal retrieving in rats. III. Sensory cues involved in the lactating female's response to her young 1. Behaviour. 1956;10(1):104-124. doi:10.1163/156853956X00129.
Chantrey DF, Jenkins BAB. Sensory processes in the discrimination of pups by female mice (Mus musculus). Anim Behav. 1982;30(3):881-885. doi:10.1016/S0003-3472(82)80162-0.
Wei D, Talwar V, Lin D. Neural circuits of social behaviors: innate yet flexible. Neuron. 2021;109(10):1600-1620. doi:10.1016/j.neuron.2021.02.012.
Alsina-Llanes M, De Brun V, Olazábal DE. Development and expression of maternal behavior in naïve female C57BL/6 mice. Dev Psychobiol. 2015;57(2):189-200. doi:10.1002/dev.21276.
Mathis A, Mamidanna P, Cury KM, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21(9):1281-1289. doi:10.1038/s41593-018-0209-y.
Winters C, Gorssen W, Ossorio-Salazar VA, Nilsson S, Golden S, D’Hooge R. Automated procedure to assess pup retrieval in laboratory mice. Sci Rep. 2022;12(1):1663. doi:10.1038/s41598-022-05641-w.
Wiltschko AB, Tsukahara T, Zeine A, et al. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci. 2020;23(11):1433-1443. doi:10.1038/s41593-020-00706-3.
Stevenson PK, Casenhiser DM, Lau BYB, Krishnan K. Systematic analysis of goal-related movement sequences during maternal behaviour in a female mouse model for Rett syndrome. Eur J Neurosci. 2021;54(2):4528-4549. doi:10.1111/ejn.15327.
Carandini M, Churchland AK. Probing perceptual decisions in rodents. Nat Neurosci. 2013;16(7):824-831. doi:10.1038/nn.3410.
Marlin BJ, Mitre M, D'amour JA, Chao MV, Froemke RC. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature. 2015;520(7548):499-504. doi:10.1038/nature14402.
Vinograd A, Fuchs-Shlomai Y, Stern M, et al. Functional plasticity of odor representations during motherhood. Cell Rep. 2017;21(2):351-365. doi:10.1016/j.celrep.2017.09.038.
Champagne FA, Curley JP, Keverne EB, Bateson PPG. Natural variations in postpartum maternal care in inbred and outbred mice. Physiol Behav. 2007;91(2):325-334. doi:10.1016/j.physbeh.2007.03.014.
Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847-854. doi:10.1038/nn1276.
Murgatroyd CA, Peña CJ, Podda G, Nestler EJ, Nephew BC. Early life social stress induced changes in depression and anxiety associated neural pathways which are correlated with impaired maternal care. Neuropeptides. 2015;52:103-111. doi:10.1016/j.npep.2015.05.002.
Chalfin L, Dayan M, Levy DR, et al. Mapping ecologically relevant social behaviours by gene knockout in wild mice. Nat Commun. 2014;5(1):4569. doi:10.1038/ncomms5569.
Berendzen KM, Sharma R, Mandujano MA, et al. Oxytocin receptor is not required for social attachment in prairie voles. Neuron. 2022;111:787-796. doi:10.1016/j.neuron.2022.12.011.
Olazábal DE, Young LJ. Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience. 2006;141(2):559-568. doi:10.1016/j.neuroscience.2006.04.017.
Olazábal DE, Young LJ. Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum. Horm Behav. 2006;49(5):681-687. doi:10.1016/j.yhbeh.2005.12.010.
Bales KL. Parenting in animals. Curr Opin Psychol. 2017;15:93-98. doi:10.1016/j.copsyc.2017.02.026.
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol. 2019;31(12):e12807. doi:10.1111/jne.12807.
Bendesky A, Kwon YM, Lassance JM, et al. The genetic basis of parental care evolution in monogamous mice. Nature. 2017;544(7651):434-439. doi:10.1038/nature22074.
Mykytowycz R, Goodrich BS. Skin glands as organs of communication in mammals. J Invest Dermatol. 1974;62(3):124-131. doi:10.1111/1523-1747.ep12676776.
Natynczuk SE, Macdonald DW. Scent, sex, and the self-calibrating rat. J Chem Ecol. 1994;20(8):1843-1857. doi:10.1007/BF02066226.
Stopka P, Janotova K, Heyrovsky D. The advertisement role of major urinary proteins in mice. Physiol Behav. 2007;91(5):667-670. doi:10.1016/j.physbeh.2007.03.030.
Dulac C, Wagner S. Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet. 2006;40(1):449-467. doi:10.1146/annurev.genet.39.073003.093937.
Lévy F, Keller M, Poindron P. Olfactory regulation of maternal behavior in mammals. Horm Behav. 2004;46(3):284-302. doi:10.1016/j.yhbeh.2004.02.005.
Lévy F, Keller M. Olfactory mediation of maternal behavior in selected mammalian species. Behav Brain Res. 2009;200(2):336-345. doi:10.1016/j.bbr.2008.12.017.
Gandelman R, Zarrow MX, Denenberg VH, Myers M. Olfactory bulb removal eliminates maternal behavior in the mouse. Science. 1971;171(3967):210-211. doi:10.1126/science.171.3967.210.
Vandenbergh JG. Effects of central and peripheral anosmia on reproduction of female mice. Physiol Behav. 1973;10(2):257-261. doi:10.1016/0031-9384(73)90307-7.
Seegal RF, Denenberg VH. Maternal experience prevents pup-killing in mice induced by peripheral anosmia. Physiol Behav. 1974;13(2):339-341. doi:10.1016/0031-9384(74)90056-0.
Wang Z, Storm DR. Maternal behavior is impaired in female mice lacking type 3 adenylyl cyclase. Neuropsychopharmacology. 2011;36(4):772-781. doi:10.1038/npp.2010.211.
Weiss J, Pyrski M, Jacobi E, et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature. 2011;472(7342):186-190. doi:10.1038/nature09975.
Dulac C, O'Connell LA, Wu Z. Neural control of maternal and paternal behaviors. Science. 2014;345(6198):765-770. doi:10.1126/science.1253291.
Gschwend O, Abraham NM, Lagier S, Begnaud F, Rodriguez I, Carleton A. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat Neurosci. 2015;18(10):1474-1482. doi:10.1038/nn.4089.
Poindron P. Mechanisms of activation of maternal behaviour in mammals. Reprod Nutr Dev. 2005;45(3):341-351. doi:10.1051/rnd:2005025.
Navarro-Moreno C, Sanchez-Catalan MJ, Barneo-Muñoz M, et al. Pregnancy changes the response of the Vomeronasal and olfactory systems to pups in mice. Front Cell Neurosci. 2020;14:593309. doi:10.3389/fncel.2020.593309.
Cameron EL. Pregnancy and olfaction: a review. Front Psychol. 2014;5:67.
Kendrick KM, Lévy F, Keverne EB. Changes in the sensory processing of olfactory signals induced by birth in sheep. Science. 1992;256(5058):833-836. doi:10.1126/science.1589766.
Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci. 2003;4(7):551-562. doi:10.1038/nrn1140.
Haga S, Hattori T, Sato T, et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature. 2010;466(7302):118-122. doi:10.1038/nature09142.
Papes F, Logan DW, Stowers L. The Vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell. 2010;141(4):692-703. doi:10.1016/j.cell.2010.03.037.
Kimchi T, Xu J, Dulac C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature. 2007;448(7157):1009-1014. doi:10.1038/nature06089.
Tachikawa KS, Yoshihara Y, Kuroda KO. Behavioral transition from attack to parenting in male mice: a crucial role of the Vomeronasal system. J Neurosci. 2013;33(12):5120-5126. doi:10.1523/JNEUROSCI.2364-12.2013.
Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. Galanin neurons in the medial preoptic area govern parental behavior. Nature. 2014;509(7500):325-330. doi:10.1038/nature13307.
Fraser EJ, Shah NM. Complex chemosensory control of female reproductive behaviors. PLOS One. 2014;9(2):e90368. doi:10.1371/journal.pone.0090368.
Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R. Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci. 2002;99(9):6376-6381. doi:10.1073/pnas.082127599.
Stowers L, Holy TE, Meister M, Dulac C, Koentges G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science. 2002;295(5559):1493-1500. doi:10.1126/science.1069259.
Nakahara TS, Camargo AP, Magalhães PHM, et al. Peripheral oxytocin injection modulates vomeronasal sensory activity and reduces pup-directed aggression in male mice. Sci Rep. 2020;10(1):19943. doi:10.1038/s41598-020-77061-7.
Mennella JA, Moltz H. Infanticide in the male rat: the role of the vomeronasal organ. Physiol Behav. 1988;42(3):303-306. doi:10.1016/0031-9384(88)90087-X.
Castellucci GA, Calbick D, McCormick D. The temporal organization of mouse ultrasonic vocalizations. PLOS One. 2018;13(10):e0199929. doi:10.1371/journal.pone.0199929.
Ehret G. Infant rodent ultrasounds - a gate to the understanding of sound communication. Behav Genet. 2005;35(1):19-29. doi:10.1007/s10519-004-0853-8.
Zippelius HM, Schleidt WM. Ultraschall-Laute bei jungen Mausen. Naturwissenschaften. 1956;43(21):502. doi:10.1007/BF00632534.
Ehret G, Bernecker C. Low-frequency sound communication by mouse pups (Mus musculus): wriggling calls release maternal behaviour. Anim Behav. 1986;34(3):821-830. doi:10.1016/S0003-3472(86)80067-7.
Liu RC, Miller KD, Merzenich MM, Schreiner CE. Acoustic variability and distinguishability among mouse ultrasound vocalizations. J Acoust Soc Am. 2003;114(6):3412-3422. doi:10.1121/1.1623787.
Schiavo JK, Valtcheva S, Bair-Marshall CJ, Song SC, Martin KA, Froemke RC. Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature. 2020;587(7834):426-431. doi:10.1038/s41586-020-2807-6.
Liu RC, Linden JF, Schreiner CE. Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. Eur J Neurosci. 2006;23(11):3087-3097. doi:10.1111/j.1460-9568.2006.04840.x.
Haack B, Markl H, Ehret G. Sound Communication between Parents and Offspring. The auditory psychobiology of the mouse. Charles C Thomas Publisher, Ltd; 1983.
Ehret G. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature. 1987;325(6101):249-251. doi:10.1038/325249a0.
Sewell GD. Ultrasonic communication in rodents. Nature. 1970;227(5256):410. doi:10.1038/227410a0.
Hernandez-Miranda LR, Ruffault PL, Bouvier JC, et al. Genetic identification of a hindbrain nucleus essential for innate vocalization. Proc Natl Acad Sci. 2017;114(30):8095-8100. doi:10.1073/pnas.1702893114.
Wu WL, Wang CH, Huang EYK, Chen CC. Asic3−/− female mice with hearing deficit affects social development of pups. PLOS One. 2009;4(8):e6508. doi:10.1371/journal.pone.0006508.
D'Amato FR, Populin R. Mother-offspring interaction and pup development in genetically deaf mice. Behav Genet. 1987;17(5):465-475. doi:10.1007/BF01073113.
Carcea I, Caraballo NL, Marlin BJ, et al. Oxytocin neurons enable social transmission of maternal behaviour. Nature. 2021;596(7873):553-557. doi:10.1038/s41586-021-03814-7.
Cohen L, Rothschild G, Mizrahi A. Multisensory integration of natural odors and sounds in the auditory cortex. Neuron. 2011;72(2):357-369. doi:10.1016/j.neuron.2011.08.019.
Cohen L, Mizrahi A. Plasticity during motherhood: changes in excitatory and inhibitory layer 2/3 neurons in auditory cortex. J Neurosci. 2015;35(4):1806-1815. doi:10.1523/JNEUROSCI.1786-14.2015.
Elyada YM, Mizrahi A. Becoming a mother-circuit plasticity underlying maternal behavior. Curr Opin Neurobiol. 2015;35:49-56. doi:10.1016/j.conb.2015.06.007.
Galindo-Leon EE, Lin FG, Liu RC. Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations. Neuron. 2009;62(5):705-716. doi:10.1016/j.neuron.2009.05.001.
Shepard KN, Lin FG, Zhao CL, Chong KK, Liu RC. Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. J Neurosci. 2015;35(6):2636-2645. doi:10.1523/JNEUROSCI.3803-14.2015.
Tasaka G, Feigin L, Maor I, et al. The temporal association cortex plays a key role in auditory-driven maternal plasticity. Neuron. 2020;107(3):566-579.e7. doi:10.1016/j.neuron.2020.05.004.
Krishnan K, Lau BYB, Ewall G, Huang ZJ, Shea SD. MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nat Commun. 2017;8(1):14077. doi:10.1038/ncomms14077.
Lau BYB, Krishnan K, Huang ZJ, Shea SD. Maternal experience-dependent cortical plasticity in mice is circuit- and stimulus-specific and requires MECP2. J Neurosci. 2020;40(7):1514-1526. doi:10.1523/JNEUROSCI.1964-19.2019.
Moreno A, Gumaste A, Adams GK, et al. Familiarity with social sounds alters c-Fos expression in auditory cortex and interacts with estradiol in locus coeruleus. Hear Res. 2018;366:38-49. doi:10.1016/j.heares.2018.06.020.
Ruthig P, Schönwiesner M. Common principles in the lateralization of auditory cortex structure and function for vocal communication in primates and rodents. Eur J Neurosci. 2022;55(3):827-845. doi:10.1111/ejn.15590.
Levy RB, Marquarding T, Reid AP, Pun CM, Renier N, Oviedo HV. Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nat Commun. 2019;10(1):2783. doi:10.1038/s41467-019-10690-3.
Mitre M, Marlin BJ, Schiavo JK, et al. A distributed network for social cognition enriched for oxytocin receptors. J Neurosci. 2016;36(8):2517-2535. doi:10.1523/JNEUROSCI.2409-15.2016.
Halene TB, Talmud J, Jonak GJ, Schneider F, Siegel SJ. Predator odor modulates auditory event-related potentials in mice. Neuroreport. 2009;20(14):1260-1264. doi:10.1097/WNR.0b013e3283300cde.
Seo H-S, Hummel T. Auditory-olfactory integration: congruent or pleasant sounds amplify odor pleasantness. Chem Senses. 2011;16:301-309.
Wesson DW, Wilson DA. Smelling sounds: olfactory-auditory sensory convergence in the olfactory tubercle. J Neurosci. 2010;30(8):3013-3021. doi:10.1523/JNEUROSCI.6003-09.2010.
Koch M, Ehret G. Estradiol and parental experience, but not prolactin are necessary for ultrasound recognition and pup-retrieving in the mouse. Physiol Behav. 1989;45(4):771-776. doi:10.1016/0031-9384(89)90293-X.
Stolzenberg DS, Champagne FA. Hormonal and non-hormonal bases of maternal behavior: the role of experience and epigenetic mechanisms. Horm Behav. 2016;77:204-210. doi:10.1016/j.yhbeh.2015.07.005.
Rosenblatt JS. Nonhormonal basis of maternal behavior in the rat. Science. 1967;156(3781):1512-1514. doi:10.1126/science.156.3781.1512.
Xerri C, Stern J, Merzenich M. Alterations of the cortical representation of the rat ventrum induced by nursing behavior. J Neurosci. 1994;14(3):1710-1721. doi:10.1523/JNEUROSCI.14-03-01710.1994.
Lau BYB, Layo DE, Emery B, et al. Lateralized expression of cortical Perineuronal nets during maternal experience is dependent on MECP2. eNeuro. 2020;7(3). doi:10.1523/ENEURO.0500-19.2020.
Febo M, Numan M, Ferris CF. Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. J Neurosci. 2005;25(50):11637-11644. doi:10.1523/JNEUROSCI.3604-05.2005.
Febo M, Stolberg TL, Numan M, Bridges RS, Kulkarni P, Ferris CF. Nursing stimulation is more than tactile sensation: it is a multisensory experience. Horm Behav. 2008;54(2):330-339. doi:10.1016/j.yhbeh.2008.02.024.
Ferris CF, Kulkarni P, Sullivan JM, Harder JA, Messenger TL, Febo M. Pup suckling is more rewarding than cocaine: evidence from functional magnetic resonance imaging and three-dimensional computational analysis. J Neurosci. 2005;25(1):149-156. doi:10.1523/JNEUROSCI.3156-04.2005.
Blazquez Freches G, Chavarrias C, Shemesh N. BOLD-fMRI in the mouse auditory pathway. Neuroimage. 2018;165:265-277. doi:10.1016/j.neuroimage.2017.10.027.
McCarthy MM, vom Saal FS. The influence of reproductive state on infanticide by wild female house mice (Mus musculus). Physiol Behav. 1985;35(6):843-849. doi:10.1016/0031-9384(85)90248-3.
Isogai Y, Wu Z, Love MI, et al. Multisensory logic of infant-directed aggression by males. Cell. 2018;175(7):1827-1841. doi:10.1016/j.cell.2018.11.032.
Kohl J, Autry AE, Dulac C. The neurobiology of parenting: a neural circuit perspective. Bioessays. 2017;39(1):e201600159. doi:10.1002/bies.201600159.
Pawluski JL, Li M, Lonstein JS. Serotonin and motherhood: from molecules to mood. Front Neuroendocrinol. 2019;53:100742. doi:10.1016/j.yfrne.2019.03.001.
Yukinaga H, Hagihara M, Tsujimoto K, et al. Recording and manipulation of the maternal oxytocin neural activities in mice. Curr Biol. 2022;32(17):3821-3829.e6. doi:10.1016/j.cub.2022.06.083.
Inada K, Hagihara M, Tsujimoto K, et al. Plasticity of neural connections underlying oxytocin-mediated parental behaviors of male mice. Neuron. 2022;110(12):2009-2023. doi:10.1016/j.neuron.2022.03.033.
Olazábal DE. Role of oxytocin in parental behaviour. J Neuroendocrinol. 2018;30(7):e12594. doi:10.1111/jne.12594.
Rickenbacher E, Perry RE, Sullivan RM, Moita MA. Freezing suppression by oxytocin in central amygdala allows alternate defensive behaviours and mother-pup interactions. eLife. 2017;6:e24080. doi:10.7554/eLife.24080.
Elwood RW. Inhibition of infanticide and onset of paternal care in male mice (Mus musculus). J Compar Psychol. 1985;99(4):457-467. doi:10.1037/0735-7036.99.4.457.
McCarthy MM, Vom Saal FS. Inhibition of infanticide after mating by wild male house mice. Physiol Behav. 1986;36(2):203-209. doi:10.1016/0031-9384(86)90004-1.
Perrigo G, Belvin L, Vom Saal FS. Time and sex in the male mouse: temporal regulation of infanticide and parental behavior. Chronobiol Int. 1992;9(6):421-433. doi:10.3109/07420529209064554.
Topilko T, Diaz SL, Pacheco CM, et al. Edinger-Westphal peptidergic neurons enable maternal preparatory nesting. Neuron. 2022;110(8):1385-1399.e8. doi:10.1016/j.neuron.2022.01.012.
Ghazanfar AA, Schroeder CE. Is neocortex essentially multisensory? Trends Cogn Sci. 2006;10(6):278-285. doi:10.1016/j.tics.2006.04.008.
Wallace MT, Ramachandran R, Stein BE. A revised view of sensory cortical parcellation. Proc Natl Acad Sci. 2004;101(7):2167-2172. doi:10.1073/pnas.0305697101.
Stein BE, Stanford TR. Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci. 2008;9(4):255-266. doi:10.1038/nrn2331.
Garner AR, Keller GB. A cortical circuit for audio-visual predictions. Nat Neurosci. 2022;25(1):98-105. doi:10.1038/s41593-021-00974-7.
Gilday OD, Mizrahi A. Learning-induced odor modulation of neuronal activity in auditory cortex. J Neurosci. 2023;43(8):1375-1386. doi:10.1523/JNEUROSCI.1398-22.2022.
Okabe S, Nagasawa M, Kihara T, et al. Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in mice. Behav Neurosci. 2013;127(3):432-438. doi:10.1037/a0032395.
Numan M, Stolzenberg DS. Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front Neuroendocrinol. 2009;30(1):46-64. doi:10.1016/j.yfrne.2008.10.002.
Numan M. Medial preoptic area and maternal behavior in the female rat. J Comp Physiol Psychol. 1974;87(4):746-759. doi:10.1037/h0036974.
Olazábal DE, Pereira M, Agrati D, et al. Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neurosci Biobehav Rev. 2013;37(8):1875-1892. doi:10.1016/j.neubiorev.2013.04.004.
Kohl J, Babayan BM, Rubinstein ND, et al. Functional circuit architecture underlying parental behaviour. Nature. 2018;556(7701):326-331. doi:10.1038/s41586-018-0027-0.
Smith CD, Holschbach MA, Olsewicz J, Lonstein JS. Effects of noradrenergic alpha-2 receptor antagonism or noradrenergic lesions in the ventral bed nucleus of the stria terminalis and medial preoptic area on maternal care in female rats. Psychopharmacology. 2012;224(2):263-276. doi:10.1007/s00213-012-2749-2.
Fang YY, Yamaguchi T, Song SC, Tritsch NX, Lin D. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron. 2018;98(1):192-207.e10. doi:10.1016/j.neuron.2018.02.019.
Lecca S, Congiu M, Royon L, et al. A neural substrate for negative affect dictates female parental behavior. Neuron. 2023;111:1094-1103. doi:10.1016/j.neuron.2023.01.003.
Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav. 2012;61(3):293-303. doi:10.1016/j.yhbeh.2011.11.002.
Numan M, Bress JA, Ranker LR, et al. The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behav Brain Res. 2010;214(2):368-376. doi:10.1016/j.bbr.2010.06.006.
Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14(2-3):69-97. doi:10.1016/0301-0082(80)90018-0.
Alsina-Llanes M, Olazábal DE. Prefrontal cortex is associated with the rapid onset of parental behavior in inexperienced adult mice (C57BL/6). Behav Brain Res. 2020;385:112556. doi:10.1016/j.bbr.2020.112556.
Bizley JK, Jones GP, Town SM. Where are multisensory signals combined for perceptual decision-making? Curr Opin Neurobiol. 2016;40:31-37. doi:10.1016/j.conb.2016.06.003.
Otero-García M, Agustín-Pavón C, Lanuza E, Martínez-García F. Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Struct Funct. 2016;221(7):3445-3473. doi:10.1007/s00429-015-1111-y.
Navarro-Moreno C, Barneo-Muñoz M, Ibáñez-Gual MV, et al. Becoming a mother shifts the activity of the social and motivation brain networks in mice. iScience. 2022;25(7):104525. doi:10.1016/j.isci.2022.104525.
Contestabile A, Casarotto G, Girard B, Tzanoulinou S, Bellone C. Deconstructing the contribution of sensory cues in social approach. Eur J Neurosci. 2021;53(9):3199-3211. doi:10.1111/ejn.15179.
de la Zerda SH, Netser S, Magalnik H, et al. Social recognition in laboratory mice requires integration of behaviorally-induced somatosensory, auditory and olfactory cues. Psychoneuroendocrinology. 2022;143:105859. doi:10.1016/j.psyneuen.2022.105859.
Komura Y, Tamura R, Uwano T, Nishijo H, Ono T. Auditory thalamus integrates visual inputs into behavioral gains. Nat Neurosci. 2005;8(9):1203-1209. doi:10.1038/nn1528.
Vetere G, Tran LM, Moberg S, et al. Memory formation in the absence of experience. Nat Neurosci. 2019;22(6):933-940. doi:10.1038/s41593-019-0389-0.
Numan M, Young LJ. Neural mechanisms of mother-infant bonding and pair bonding: similarities, differences, and broader implications. Horm Behav. 2016;77:98-112. doi:10.1016/j.yhbeh.2015.05.015.
Franks B, Champagne FA, Curley JP. Postnatal maternal care predicts divergent weaning strategies and the development of social behavior. Dev Psychobiol. 2015;57(7):809-817. doi:10.1002/dev.21326.
فهرسة مساهمة: Keywords: auditory; maternal behavior; multisensory; olfaction; parental behavior
تواريخ الأحداث: Date Created: 20230605 Date Completed: 20230807 Latest Revision: 20230808
رمز التحديث: 20231215
DOI: 10.1111/jne.13307
PMID: 37277889
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2826
DOI:10.1111/jne.13307