دورية أكاديمية

Spinocerebellar Ataxia Type 1 Characteristics in Patient-Derived Fibroblast and iPSC-Derived Neuronal Cultures.

التفاصيل البيبلوغرافية
العنوان: Spinocerebellar Ataxia Type 1 Characteristics in Patient-Derived Fibroblast and iPSC-Derived Neuronal Cultures.
المؤلفون: Buijsen RAM; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Hu M; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.; Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Sáez-González M; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Notopoulou S; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece., Mina E; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Koning W; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Gardiner SL; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.; Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., van der Graaf LM; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Daoutsali E; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Pepers BA; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Mei H; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., van Dis V; Department of Pathology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.; Department of Pathology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands., Frimat JP; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.; Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., van den Maagdenberg AMJM; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.; Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands., Petrakis S; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece., van Roon-Mom WMC; Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands.
المصدر: Movement disorders : official journal of the Movement Disorder Society [Mov Disord] 2023 Aug; Vol. 38 (8), pp. 1428-1442. Date of Electronic Publication: 2023 Jun 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8610688 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1531-8257 (Electronic) Linking ISSN: 08853185 NLM ISO Abbreviation: Mov Disord Subsets: MEDLINE
أسماء مطبوعة: Publication: <2001->: New York, NY : Wiley-Liss
Original Publication: [New York, N.Y.] : Raven Press, [c1986-
مواضيع طبية MeSH: Induced Pluripotent Stem Cells* , Spinocerebellar Ataxias*/metabolism, Mice ; Animals ; Ataxins/metabolism ; Protein Aggregates ; Nerve Tissue Proteins/genetics ; Nerve Tissue Proteins/metabolism ; Nuclear Proteins/genetics ; Mice, Transgenic ; Purkinje Cells/metabolism ; Purkinje Cells/pathology ; Fibroblasts/metabolism
مستخلص: Background: Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein resulting in neuropathology including mutant ataxin-1 protein aggregation, aberrant neurodevelopment, and mitochondrial dysfunction.
Objectives: Identify SCA1-relevant phenotypes in patient-specific fibroblasts and SCA1 induced pluripotent stem cells (iPSCs) neuronal cultures.
Methods: SCA1 iPSCs were generated and differentiated into neuronal cultures. Protein aggregation and neuronal morphology were evaluated using fluorescent microscopy. Mitochondrial respiration was measured using the Seahorse Analyzer. The multi-electrode array (MEA) was used to identify network activity. Finally, gene expression changes were studied using RNA-seq to identify disease-specific mechanisms.
Results: Bioenergetics deficits in patient-derived fibroblasts and SCA1 neuronal cultures showed altered oxygen consumption rate, suggesting involvement of mitochondrial dysfunction in SCA1. In SCA1 hiPSC-derived neuronal cells, nuclear and cytoplasmic aggregates were identified similar in localization as aggregates in SCA1 postmortem brain tissue. SCA1 hiPSC-derived neuronal cells showed reduced dendrite length and number of branching points while MEA recordings identified delayed development in network activity in SCA1 hiPSC-derived neuronal cells. Transcriptome analysis identified 1050 differentially expressed genes in SCA1 hiPSC-derived neuronal cells associated with synapse organization and neuron projection guidance, where a subgroup of 151 genes was highly associated with SCA1 phenotypes and linked to SCA1 relevant signaling pathways.
Conclusions: Patient-derived cells recapitulate key pathological features of SCA1 pathogenesis providing a valuable tool for the identification of novel disease-specific processes. This model can be used for high throughput screenings to identify compounds, which may prevent or rescue neurodegeneration in this devastating disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
(© 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.)
References: Sullivan R, Yau WY, O'Connor E, Houlden H. Spinocerebellar ataxia: an update. J Neurol 2019;266(2):533-544.
Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004;3(5):291-304.
Opal P, Ashizawa T. Spinocerebellar ataxia type 1. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., eds. GeneReviews((R)). Seattle, WA: University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993.
Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 2011;77(11):1035-1041.
Zoghbi HY, Pollack MS, Lyons LA, Ferrell RE, Daiger SP, Beaudet AL. Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann Neurol 1988;23(6):580-584.
Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4(3):221-226.
Goldfarb LG, Vasconcelos O, Platonov FA, Lunkes A, Kipnis V, Kononova S, et al. Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol 1996;39(4):500-506.
Zuhlke C, Dalski A, Hellenbroich Y, Bubel S, Schwinger E, Burk K. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Med Genet 2002;10(3):204-209.
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias. Neurotherapeutics 2019;16(2):263-286.
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias-from genes to potential treatments. Nat Rev Neurosci 2017;18(10):613-626.
Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, et al. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 2014;23(4-5):441-458.
Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012;124(1):1-21.
Duyckaerts C, Durr A, Cancel G, Brice A. Nuclear inclusions in spinocerebellar ataxia type 1. Acta Neuropathol 1999;97(2):201-207.
Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, et al. A long CAG repeat in the mouse SCA1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 2002;34(6):905-919.
Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 2004;24(40):8853-8861.
Edamakanti CR, Do J, Didonna A, Martina M, Opal P. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1. J Clin Invest 2018;128(6):2252-2265.
Ibrahim MF, Power EM, Potapov K, Empson RM. Motor and cerebellar architectural abnormalities during the early progression of ataxia in a mouse model of SCA1 and how early prevention leads to a better outcome later in life. Front Cell Neurosci 2017;11:292.
Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 2005;14(19):2871-2880.
Siddiqui A, Rivera-Sanchez S, Castro Mdel R, Acevedo-Torres K, Rane A, Torres-Ramos CA, et al. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease. Free Radic Biol Med 2012;53(7):1478-1488.
Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tumer Z, et al. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: effect of coenzyme Q10 supplementation on these parameters. Mitochondrion 2017;34:103-114.
Gardiner SL, Milanese C, Boogaard MW, Buijsen RAM, Hogenboom M, Roos RAC, et al. Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. Neurol Genet 2018;4(5):e275.
Ward JM, Stoyas CA, Switonski PM, Ichou F, Fan W, Collins B, et al. Metabolic and organelle morphology defects in mice and human patients define spinocerebellar ataxia type 7 as a mitochondrial disease. Cell Rep 2019;26(5):1189-1202.
Stucki DM, Ruegsegger C, Steiner S, Radecke J, Murphy MP, Zuber B, et al. Mitochondrial impairments contribute to spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic Biol Med 2016;97:427-440.
Sanchez I, Balague E, Matilla-Duenas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3beta-mTOR pathway which is altered in spinocerebellar ataxia type 1 (SCA1). Hum Mol Genet 2016;25(18):4021-4040.
Ferro A, Carbone E, Zhang J, Marzouk E, Villegas M, Siegel A, et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS One 2017;12(12):e0188425.
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-872.
Hommersom MP, Buijsen RAM, van Roon-Mom WMC, van de Warrenburg BPC, van Bokhoven H. Human induced pluripotent stem cell-based modelling of spinocerebellar ataxias. Stem Cell Rev Rep 2021;18(2):441-456.
Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 2011;480(7378):543-546.
Ishida Y, Kawakami H, Kitajima H, Nishiyama A, Sasai Y, Inoue H, et al. Vulnerability of Purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Rep 2016;17(6):1482-1490.
Chuang CY, Yang CC, Soong BW, Yu CY, Chen SH, Huang HP, et al. Modeling spinocerebellar ataxias 2 and 3 with iPSCs reveals a role for glutamate in disease pathology. Sci Rep 2019;9(1):1166.
Scholefield J, Watson L, Smith D, Greenberg J, Wood MJ. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts. Eur J Hum Genet 2014;22(12):1369-1375.
Buijsen RAM, Gardiner SL, Bouma MJ, van der Graaf LM, Boogaard MW, Pepers BA, et al. Generation of 3 spinocerebellar ataxia type 1 (SCA1) patient-derived induced pluripotent stem cell lines LUMCi002-A, B, and C and 2 unaffected sibling control induced pluripotent stem cell lines LUMCi003-A and B. Stem Cell Res 2018;29:125-128.
Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66(11):1717-1720.
Gardiner SL, Harder AVE, Campman YJM, Trompet S, Gussekloo J, van Belzen MJ, et al. Repeat length variations in ATXN1 and AR modify disease expression in Alzheimer's disease. Neurobiol Aging 2019;73:230.e9-230.e17.
Hu M, Frega M, Tolner EA, van den Maagdenberg A, Frimat JP, le Feber J. MEA-toolbox: an open source toolbox for standardized analysis of multi-electrode array data. Neuroinformatics 2022;20(4):1077-1092.
Daoutsali E, Buijsen RAM, van de Pas S, Jong A, Mikkers H, Brands T, et al. Generation of 3 human induced pluripotent stem cell lines LUMCi005-A, B and C from a hereditary cerebral hemorrhage with amyloidosis-dutch type patient. Stem Cell Res 2019;34:101359.
van der Graaf LM, Gardiner SL, Tok M, Brands T, Boogaard MW, Pepers BA, et al. Generation of 5 induced pluripotent stem cell lines, LUMCi007-A and B and LUMCi008-A, B and C, from 2 patients with Huntington disease. Stem Cell Res 2019;39:101498.
Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor capicua. Science 2011;334(6056):690-693.
Laidou S, Alanis-Lobato G, Pribyl J, Rasko T, Tichy B, Mikulasek K, et al. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biol 2020;32:101458.
Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T, et al. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep 2020;10(1):5418.
Consortium THi. Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet 2019;29(11):1757-1771.
Hukema RK, Buijsen RA, Raske C, Severijnen LA, Nieuwenhuizen-Bakker I, Minneboo M, et al. Induced expression of expanded CGG RNA causes mitochondrial dysfunction in vivo. Cell Cycle 2014;13(16):2600-2608.
Chapple JP, Bros-Facer V, Butler R, Gallo JM. Focal distortion of the nuclear envelope by huntingtin aggregates revealed by lamin immunostaining. Neurosci Lett 2008;447(2-3):172-174.
Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P, et al. Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 2017;93(2):331-347.
Friedrich J, Kordasiewicz HB, O'Callaghan B, Handler HP, Wagener C, Duvick L, et al. Antisense oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight 2018;3(21):e123193.
Aizenman CD, Linden DJ. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 1999;82(4):1697-1709.
Raman IM, Bean BP. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 1999;19(5):1663-1674.
Wolfart J, Neuhoff H, Franz O, Roeper J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 2001;21(10):3443-3456.
Nelson AB, Krispel CM, Sekirnjak C, du Lac S. Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron 2003;40(3):609-620.
Le Bon-Jego M, Yuste R. Persistently active, pacemaker-like neurons in neocortex. Front Neurosci 2007;1(1):123-129.
Ebner BA, Ingram MA, Barnes JA, Duvick LA, Frisch JL, Clark HB, et al. Purkinje cell ataxin-1 modulates climbing fiber synaptic input in developing and adult mouse cerebellum. J Neurosci 2013;33(13):5806-5820.
Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep 2015;5:16102.
Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52(1):155-168.
Frega M, Linda K, Keller JM, Gumus-Akay G, Mossink B, van Rhijn JR, et al. Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun 2019;10(1):4928.
Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d'E A, et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 2011;31(33):11795-11807.
Duvick L, Barnes J, Ebner B, Agrawal S, Andresen M, Lim J, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron 2010;67(6):929-935.
Shakkottai VG, do Carmo Costa M, Dell'Orco JM, Sankaranarayanan A, Wulff H, Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 2011;31(36):13002-13014.
Chopra R, Shakkottai VG. Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. Future Neurol 2014;9(2):187-196.
Dell'Orco JM, Wasserman AH, Chopra R, Ingram MA, Hu YS, Singh V, et al. Neuronal atrophy early in degenerative ataxia is a compensatory mechanism to regulate membrane excitability. J Neurosci 2015;35(s32):11292-11307.
Vagiona AC, Andrade-Navarro MA, Psomopoulos F, Petrakis S. Dynamics of a protein interaction network associated to the aggregation of polyQ-expanded ataxin-1. Genes 2020;11(10):1129.
Dissanayake K, Toth R, Blakey J, Olsson O, Campbell DG, Prescott AR, et al. ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicua. Biochem J 2011;433(3):515-525.
Ahmad ST, Rogers AD, Chen MJ, Dixit R, Adnani L, Frankiw LS, et al. Capicua regulates neural stem cell proliferation and lineage specification through control of Ets factors. Nat Commun 2019;10(1):2000.
Weissmann S, Cloos PA, Sidoli S, Jensen ON, Pollard S, Helin K. The tumor suppressor CIC directly regulates MAPK pathway genes via histone deacetylation. Cancer Res 2018;78(15):4114-4125.
Wang B, Krall EB, Aguirre AJ, Kim M, Widlund HR, Doshi MB, et al. ATXN1L, CIC, and ETS transcription factors modulate sensitivity to MAPK pathway inhibition. Cell Rep 2017;18(6):1543-1557.
Shimobayashi E, Kapfhammer JP. Calcium signaling, PKC gamma, IP3R1 and CAR8 link spinocerebellar Ataxias and Purkinje cell dendritic development. Curr Neuropharmacol 2018;16(2):151-159.
فهرسة مساهمة: Keywords: MEA; RNA sequencing; bioenergetics; disease modelling; electrophysiology; human induced pluripotent stem cells; neurodegeneration; neuronal aggregates; neuronal morphology; spinocerebellar ataxia type 1
المشرفين على المادة: 0 (Ataxins)
0 (Protein Aggregates)
0 (Nerve Tissue Proteins)
0 (Nuclear Proteins)
تواريخ الأحداث: Date Created: 20230606 Date Completed: 20230814 Latest Revision: 20230818
رمز التحديث: 20230819
DOI: 10.1002/mds.29446
PMID: 37278528
قاعدة البيانات: MEDLINE
الوصف
تدمد:1531-8257
DOI:10.1002/mds.29446