دورية أكاديمية

Geology and land use shape nitrogen and sulfur cycling groundwater microbial communities in Pacific Island aquifers.

التفاصيل البيبلوغرافية
العنوان: Geology and land use shape nitrogen and sulfur cycling groundwater microbial communities in Pacific Island aquifers.
المؤلفون: Watson SJ; University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA., Arisdakessian C; University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA.; University of Hawai'i at Mānoa, Department of Information and Computer Sciences, Honolulu, HI, USA., Petelo M; University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA., Keliipuleole K; University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA.; University of Hawai'i at Mānoa, Marine Biology Graduate Program, Honolulu, HI, USA., Tachera DK; University of Hawai'i at Mānoa, Department of Earth Sciences, Honolulu, HI, USA., Okuhata BK; University of Hawai'i at Mānoa, Department of Earth Sciences, Honolulu, HI, USA., Dulai H; University of Hawai'i at Mānoa, Department of Earth Sciences, Honolulu, HI, USA., Frank KL; University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA. klfrank@hawaii.edu.
المصدر: ISME communications [ISME Commun] 2023 Jun 07; Vol. 3 (1), pp. 58. Date of Electronic Publication: 2023 Jun 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 9918205372406676 Publication Model: Electronic Cited Medium: Internet ISSN: 2730-6151 (Electronic) Linking ISSN: 27306151 NLM ISO Abbreviation: ISME Commun Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: 3 2024- : Oxford : Oxford University Press
Original Publication: [London] : Springer Nature on behalf of the International Society for Microbial Ecology, [2021]-
مستخلص: Resource-constrained island populations have thrived in Hawai'i for over a millennium, but now face aggressive new challenges to fundamental resources, including the security and sustainability of water resources. Characterizing the microbial community in groundwater ecosystems is a powerful approach to infer changes from human impacts due to land management in hydrogeological complex aquifers. In this study, we investigate how geology and land management influence geochemistry, microbial diversity and metabolic functions. We sampled a total of 19 wells over 2-years across the Hualālai watershed of Kona, Hawai'i analyzing geochemistry, and microbial communities by 16S rRNA amplicon sequencing. Geochemical analysis revealed significantly higher sulfate along the northwest volcanic rift zone, and high nitrogen (N) correlated with high on-site sewage disposal systems (OSDS) density. A total of 12,973 Amplicon Sequence Variants (ASV) were identified in 220 samples, including 865 ASVs classified as putative N and sulfur (S) cyclers. The N and S cyclers were dominated by a putative S-oxidizer coupled to complete denitrification (Acinetobacter), significantly enriched up to 4-times comparatively amongst samples grouped by geochemistry. The significant presence of Acinetobacter infers the bioremediation potential of volcanic groundwater for microbial-driven coupled S-oxidation and denitrification providing an ecosystem service for island populations dependent upon groundwater aquifers.
(© 2023. The Author(s).)
References: Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219. (PMID: 27774985507906010.1038/ncomms13219)
Korbel KL, Hancock PJ, Serov P, Lim RP, Hose GC. Groundwater ecosystems vary with land use across a mixed agricultural landscape. J Environ Qual. 2013;42:380–90. https://doi.org/10.2134/jeq2012.0018 . (PMID: 10.2134/jeq2012.001823673830)
Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83. (PMID: 96184543386310.1073/pnas.95.12.6578)
Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshwater Biol. 2009;54:649–77. https://doi.org/10.1111/j.1365-2427.2008.02013.x . (PMID: 10.1111/j.1365-2427.2008.02013.x)
Flynn TM, Sanford RA, Santo Domingo JW, Ashbolt NJ, Levine AD, Bethke CM. The active bacterial community in a pristine confined aquifer. Water Resour Res. 2012;48. https://onlinelibrary.wiley.com/doi/10.1029/2011WR011568 .
Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, et al. Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl. 2006;16:2064–90. (PMID: 1720589010.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2)
Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM. The thermodynamic ladder in geomicrobiology. Am J Sci. 2011;311:183–210. (PMID: 10.2475/03.2011.01)
Kirs M, Kisand V, Nelson CE, Dudoit T, Moravcik PS. Distinct bacterial communities in tropical island aquifers. PLoS One. 2020;15:e0232265. (PMID: 32353009719244410.1371/journal.pone.0232265)
Sirisena KA, Daughney CJ, Moreau-Fournier M, Ryan KG, Chambers GK. National survey of molecular bacterial diversity of New Zealand groundwater: relationships between biodiversity, groundwater chemistry and aquifer characteristics. FEMS Microbiol Ecol. 2013;86:490–504. (PMID: 2381575810.1111/1574-6941.12176)
Hubalek V, Wu X, Eiler A, Buck M, Heim C, Dopson M, et al. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. ISME J. 2016;10:2556. (PMID: 27645891503070110.1038/ismej.2016.94)
Hemme CL, Tu Q, Shi Z, Qin Y, Gao W, Deng Y, et al. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Front Microbiol. 2015;6:1205. (PMID: 26583008462810610.3389/fmicb.2015.01205)
Korbel KL, Greenfield P, Hose GC. Agricultural practices linked to shifts in groundwater microbial structure and denitrifying bacteria. Sci Total Environ. 2022;807:150870. (PMID: 3462791210.1016/j.scitotenv.2021.150870)
Hawaiʻi Fresh Water Initiative. A blueprint for action: water security for an uncertain future. Honolulu, HI, USA: Hawaiʻi Community Foundation. 2016. https://www.hawaiicommunityfoundation.org/file/cat/Fresh_Water_Blueprint_FINAL_062215_small.pdf .
Whittier RB, El-Kadi A. Human health and environmental risk ranking of on-site sewage disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii. Honolulu, HI: Final report prepared for State of Hawai’i Department of Health, Safe Drinking Water Branch; 2014.
Amato DW, Bishop JM, Glenn CR, Dulai H, Smith CM. Impact of submarine groundwater discharge on marine water quality and reef Biota of Maui. PLoS One. 2016;11:e0165825. (PMID: 27812171509466810.1371/journal.pone.0165825)
Delevaux JMS, Whittier R, Stamoulis KA, Bremer LL, Jupiter S, Friedlander AM, et al. A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands. PLoS One. 2018;13:e0193230. (PMID: 29538392585158210.1371/journal.pone.0193230)
McKenzie T, Habel SL, Dulai H. Increased coastal pollution expected under future sea level stands: chemical evidence for tidal groundwater inundation of coastal wastewater infrastructure. In: Geological Society of America Abstracts with Programs. 2019. https://doi.org/10.1130/abs/2019am-330663 .
Okuhata BK, El-Kadi AI, Dulai H, Lee J, Wada CA, Bremer LL, et al. A density-dependent multi-species model to assess groundwater flow and nutrient transport in the coastal Keauhou aquifer, Hawai ‘i, USA. Hydrogeol J. 2022;30:231–50. (PMID: 10.1007/s10040-021-02407-y)
Menció A, Mas-Pla J, Otero N, Regàs O, Boy-Roura M, Puig R, et al. Nitrate pollution of groundwater; all right, but nothing else? Sci Total Environ. 2016;539:241–51. (PMID: 2636339710.1016/j.scitotenv.2015.08.151)
Kim HR, Yu S, Oh J, Kim KH, Lee JH. Moniruzzaman, et al. Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agro-livestock farming districts in South Korea. Agric Ecosyst Environ. 2019;273:50–61. (PMID: 10.1016/j.agee.2018.12.010)
Bouwman AF, Beusen AHW, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, et al. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130112. (PMID: 23713114368273610.1098/rstb.2013.0112)
Slomp CP, Van, Cappellen P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol. 2004;295:64–86. (PMID: 10.1016/j.jhydrol.2004.02.018)
Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 2008;42:4215–32. (PMID: 1872199610.1016/j.watres.2008.07.020)
Santoro AE, Boehm AB, Francis CA. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Appl Environ Microbiol. 2006;72:2102–9. (PMID: 16517659139319510.1128/AEM.72.3.2102-2109.2006)
Hashimoto S, Furukawa K, Shioyama M. Autotrophic denitrification using elemental sulfur. J Ferment Technol. 1987;65:683–92. (PMID: 10.1016/0385-6380(87)90011-2)
Burgin AJ, Hamilton SK. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ. 2007;5:89–96. (PMID: 10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2)
Robertson LA, Kuenen JG. Thiosphaera pantotropha gen. nov. sp. nov., a Facultatively Anaerobic, Facultatively Autotrophic Sulphur Bacterium. Microbiology. 1983;129:2847–55. (PMID: 10.1099/00221287-129-9-2847)
Hiscock KM, Lloyd JW, Lerner DN. Review of natural and artificial denitrification of groundwater. Water Res. 1991;25:1099–111. (PMID: 10.1016/0043-1354(91)90203-3)
Howarth RW, Marino R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol Oceanogr. 2006;51:364–76. (PMID: 10.4319/lo.2006.51.1_part_2.0364)
Street JH, Knee KL, Grossman EE, Paytan A. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Mar Chem. 2008;109:355–76. (PMID: 10.1016/j.marchem.2007.08.009)
Duarte TK, Pongkijvorasin S, Roumasset J, Amato D, Burnett K. Optimal management of a Hawaiian Coastal aquifer with nearshore marine ecological interactions. Water Resour Res. 2010;46. http://doi.wiley.com/10.1029/2010WR009094 .
Di Capua F, Pirozzi F, Lens PNL, Esposito G. Electron donors for autotrophic denitrification. Chem Eng J. 2019;362:922–37. (PMID: 10.1016/j.cej.2019.01.069)
Xu Y, Schoonen MAA, Nordstrom DK, Cunningham KM, Ball JW. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. the origin of thiosulfate in hot spring waters. Geochim Cosmochim Acta. 1998;62:3729–43. (PMID: 10.1016/S0016-7037(98)00269-5)
Stefánsson A, Arnórsson S, Gunnarsson I, Kaasalainen H, Gunnlaugsson E. The geochemistry and sequestration of H2S into the geothermal system at Hellisheidi, Iceland. J Volcanol Geotherm Res. 2011;202:179–88. (PMID: 10.1016/j.jvolgeores.2010.12.014)
Kaasalainen H, Stefánsson A. The chemistry of trace elements in surface geothermal waters and steam, Iceland. Chem Geol. 2012;330-331:60–85. (PMID: 10.1016/j.chemgeo.2012.08.019)
Luther GW, Findlay A, MacDonald D, Owings S, Hanson T, Beinart R, et al. Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol. 2011;2. https://www.frontiersin.org/article/10.3389/fmicb.2011.00062 .
Oki DS. Geohydrology and Numerical Simulation of the Ground-water Flow System of Kona, Island of Hawaii. U.S. Department of the Interior, U.S. Geological Survey. Honolulu, Hawai'i: Pacific Island Water Science Center; 1999. 70 p.
Fukunaga and Associates, Inc. Hawai’i county water use and development plan update. Department of Water Supply, Hawaii County; 2017. https://www.hawaiidws.org/wp-content/uploads/2018/06/Combined-Ph-1-2-Keauhou-20170510_w-Appendix-final.pdf .
Marston L, Konar M, Cai X, Troy TJ. Virtual groundwater transfers from overexploited aquifers in the United States. Proc Natl Acad Sci USA. 2015;112:8561–6. (PMID: 26124137450724910.1073/pnas.1500457112)
Owuor SO, Butterbach-Bahl K, Guzha AC, Rufino MC, Pelster DE, Díaz-Pinés E, et al. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol Process. 2016;5. http://ecologicalprocesses.springeropen.com/articles/10.1186/s13717-016-0060-6 .
Clague DA, Dalrymple GB. The Hawaiian-Emporer volcanic chain, part 1, geologic evolution. 1987. https://evols.library.manoa.hawaii.edu/handle/10524/33604 .
Izuka, SK, Engott, JA, Rotzoll, K, Bassiouni, M, Johnson, AG, Miller, LD, et al. Volcanic aquifers of Hawai’i-Hydrogeology, water budgets, and conceptual models. U.S. Geological Survey; 2018. Report No.: 2015-5164. https://doi.org/10.3133/sir20155164 .
Wolfe EW, Wise WS, Brent Dalrymple G. The geology and petrology of Mauna Kea Volcano, Hawaii; a study of postshield volcanism. Professional Paper; 1997. https://doi.org/10.3133/pp1557 .
Moore JG, Clague D. Coastal lava flows from Mauna Loa and Hualalai volcanoes, Kona, Hawaii. Bull. Volcanol. 1987;49:752–64. https://doi.org/10.1007/bf01079826 . (PMID: 10.1007/bf01079826)
Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME. Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res. 1989;94:17465 https://doi.org/10.1029/jb094ib12p17465 . (PMID: 10.1029/jb094ib12p17465)
Stearns HT, Macdonald GA. Geology and ground-water resources of the island of Hawaii. Honolulu Advertising; 1946. https://pubs.er.usgs.gov/publication/70160867 .
Giambelluca TW, Chen Q, Frazier AG, Price JP, Chen YL, Chu PS, et al. Online rainfall Atlas of Hawai’i. Bull Am Meteorol Soc. 2013;94:313–6. (PMID: 10.1175/BAMS-D-11-00228.1)
Korbel K, Chariton A, Stephenson S, Greenfield P, Hose GC. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems. Sci Rep. 2017;7:40702. (PMID: 28102290524437110.1038/srep40702)
U.S. Geological Survey. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory: evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water. Denver, CO: U.S. Geological Survey; 2003.
Pebesma E, Bivand R. sf: Simple Features for R. R package version 0.6-3. https://CRAN.R-project.org/package=sf .
Office of Planning and Sustainable Development. 2022. https://planning.hawaii.gov/gis/download-gis-data-expanded/ .
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20. (PMID: 23793624375397310.1128/AEM.01043-13)
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4. (PMID: 22402401340041310.1038/ismej.2012.8)
Arisdakessian C, Cleveland SB, Belcaid M. MetaFlow|mics: scalable and reproducible nextflow pipelines for the analysis of microbiome marker data. In: Practice and experience in advanced research computing. New York, NY, USA: ACM; 2020. https://dl.acm.org/doi/10.1145/3311790.3396664 .
Cleveland S, Arisdakessian C, Nelson C, Belcaid M, Frank K, Jacobs G. The C-MĀIKI gateway: a modern science platform for analyzing microbiome data. In: Practice and experience in advanced research computing. New York, NY, USA: Association for Computing Machinery; 2022. p. 1–7. (PEARC ’22).
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. (PMID: 27214047492737710.1038/nmeth.3869)
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41. (PMID: 19801464278641910.1128/AEM.01541-09)
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. (PMID: 2319328310.1093/nar/gks1219)
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. (PMID: 27781170507569710.7717/peerj.2584)
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7. (PMID: 17586664195098210.1128/AEM.00062-07)
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217 https://doi.org/10.1371/journal.pone.0061217 . (PMID: 10.1371/journal.pone.0061217236305813632530)
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x . (PMID: 10.1111/j.1654-1103.2003.tb02228.x)
Anders S, Huber W. Differential expression analysis for sequence count data. Nat Prec. 2010. https://doi.org/10.1038/npre.2010.4282.2 .
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25:1–18. (PMID: 10.18637/jss.v025.i01)
Team RC. R: 2019. A Language and Environment for Statistical Computing version. 2020;3.
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7. (PMID: 2763453210.1126/science.aaf4507)
Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016. (PMID: 3315114010.1099/ijsem.0.004213)
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. (PMID: 25516281430204910.1186/s13059-014-0550-8)
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531. (PMID: 24699258397464210.1371/journal.pcbi.1003531)
USEPA. Drinking water advisory: consumer acceptability advice and health effects analysis on sulfate. 2003. Report No.: EPA 822-R-03-007. https://www.epa.gov/sites/default/files/2014-09/documents/support_cc1_sulfate_healtheffects.pdf .
Tachera D. Groundwater chemistry: nutrient data. 2021. https://www.hydroshare.org/resource/d812bbb7c93348999371c9f1f517297f/ .
Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, et al. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol. 2001;183:6028–35. (PMID: 115670039968210.1128/JB.183.20.6028-6035.2001)
Kondo R, Nedwell DB, Purdy KJ, Silva SQ. Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J. 2004;21:145–57. (PMID: 10.1080/01490450490275307)
Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol. 2006;72:5957–62. (PMID: 16957216156366610.1128/AEM.00439-06)
Chon K, Chang JS, Lee E, Lee J, Ryu J, Cho J. Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol Eng. 2011;37:64–9. (PMID: 10.1016/j.ecoleng.2009.04.005)
Kilbride BM, Edmonds M, Biggs J. Observing eruptions of gas-rich compressible magmas from space. Nat Commun. 2016;7:13744. (PMID: 28000791518749910.1038/ncomms13744)
Attias E, Constable S, Sherman D, Ismail K, Shuler C, Dulai H. Marine electromagnetic imaging and volumetric estimation of freshwater plumes offshore Hawai’i. Geophys Res Lett. 2021;16:48. https://onlinelibrary.wiley.com/doi/10.1029/2020GL091249 .
Okuhata BK, Thomas DM, Dulai H, Popp BN, Lee J, El-Kadi AI. Inference of young groundwater ages and modern groundwater proportions using chlorofluorocarbon and tritium/helium-3 tracers from West Hawai’i Island. J Hydrol. 2022;609:127755 https://doi.org/10.1016/j.jhydrol.2022.127755 . (PMID: 10.1016/j.jhydrol.2022.127755)
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol. 2015;99:2533–48. (PMID: 2569367210.1007/s00253-015-6439-y)
Su JF, Zheng SC, Huang TL, Ma F, Shao SC, Yang SF, et al. Characterization of the anaerobic denitrification bacterium Acinetobacter sp. SZ28 and its application for groundwater treatment. Bioresour Technol. 2015;192:654–9. (PMID: 2609419010.1016/j.biortech.2015.06.020)
Lee DJ, Pan X, Wang A, Ho KL. Facultative autotrophic denitrifiers in denitrifying sulfide removal granules. Bioresour Technol. 2013;132:356–60. (PMID: 2326581610.1016/j.biortech.2012.10.105)
Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gómez J, Field JA. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng. 2006;95:1148–57. (PMID: 1680792910.1002/bit.21084)
Chen C, Ren N, Wang A, Yu Z, Lee DJ. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor. Appl Microbiol Biotechnol. 2008;78:1057–63. https://doi.org/10.1007/s00253-008-1396-3 . (PMID: 10.1007/s00253-008-1396-318305936)
Wen G, Wang T, Li K, Wang H, Wang J, Huang T. Aerobic denitrification performance of strain Acinetobacter johnsonii WGX-9 using different natural organic matter as carbon source: effect of molecular weight. Water Res. 2019;164:114956 https://doi.org/10.1016/j.watres.2019.114956 . (PMID: 10.1016/j.watres.2019.11495631415966)
Ben Maamar S, Aquilina L, Quaiser A, Pauwels H, Michon-Coudouel S, Vergnaud-Ayraud V, et al. Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths. Front Microbiol. 2015;6:1457.22. (PMID: 267339904686674)
Okuhata BK, El-Kadi AI, Dulai H, Lee J, Wada CA, Bremer LL, et al. A density-dependent multi-species model to assess groundwater flow and nutrient transport in the coastal Keauhou aquifer, Hawai’i, USA. Hydrogeol J. 2022;30:231–50. https://doi.org/10.1007/s10040-021-02407-y . (PMID: 10.1007/s10040-021-02407-y)
Bellini MI, Kumaresan D, Tarlera S, Murrell JC, Fernández-Scavino A. Identification of active denitrifiers by DNA-stable isotope probing and amplicon sequencing reveals Betaproteobacteria as responsible for attenuation of nitrate. FEMS Microbiol Ecol. https://academic.oup.com/femsec/article-abstract/94/2/fix181/4757058 .
معلومات مُعتمدة: OIA-1557349 National Science Foundation (NSF); 1931439 National Science Foundation (NSF); 1931575 National Science Foundation (NSF)
تواريخ الأحداث: Date Created: 20230607 Latest Revision: 20231108
رمز التحديث: 20231108
مُعرف محوري في PubMed: PMC10247779
DOI: 10.1038/s43705-023-00261-5
PMID: 37286627
قاعدة البيانات: MEDLINE
الوصف
تدمد:2730-6151
DOI:10.1038/s43705-023-00261-5