دورية أكاديمية

Aquatic toxicity of hydroquinone and catechol following metal oxide treatment to Ceriodaphnia dubia and Pimephales promelas.

التفاصيل البيبلوغرافية
العنوان: Aquatic toxicity of hydroquinone and catechol following metal oxide treatment to Ceriodaphnia dubia and Pimephales promelas.
المؤلفون: Abugazleh MK; Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR, 72467, USA. qotaibaa@yahoo.com., Ali HM; Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR, 72467, USA., Chester JA; Department of Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, AR, 72467, USA., Al-Fa'ouri AM; Department of Physics, Al-Balqa' Applied University, Amman, Jordan., Bouldin JL; Department of Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, AR, 72467, USA.
المصدر: Ecotoxicology (London, England) [Ecotoxicology] 2023 Jul; Vol. 32 (5), pp. 656-665. Date of Electronic Publication: 2023 Jun 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: United States NLM ID: 9885956 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-3017 (Electronic) Linking ISSN: 09639292 NLM ISO Abbreviation: Ecotoxicology Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Boston : Kluwer Academic Publishers
Original Publication: London : Chapman & Hall,
مواضيع طبية MeSH: Cladocera* , Cyprinidae* , Water Pollutants, Chemical*/toxicity, Animals ; Hydroquinones/toxicity ; Catechols/pharmacology ; Oxides/pharmacology
مستخلص: Metal oxides comprise a large group of chemicals used in water treatment to adsorb organic pollutants. The ability of titanium dioxide (TiO 2 ) and iron (III) oxide (Fe 2 O 3 ) to reduce the chronic toxicity of (phenolic) C 6 H 6 (OH) 2 isomers, namely hydroquinone (HQ) and catechol (CAT) to Ceriodaphnia dubia and Pimephales promelas (less than 24 h-old) were investigated. The toxic endpoints following metal oxide treatment were compared to endpoints of untreated CAT and HQ. In chronic toxicity testing, HQ resulted in greater toxicity than CAT for both test organisms; the median lethal concentrations (LC 50 ) for CAT were 3.66 to 12.36 mg.L -1 for C. dubia and P. promelas, respectively, while LC 50 for HQ were 0.07 to 0.05 mg.L -1 , respectively. Although both treated solutions presented lower toxic endpoints than those in the untreated solutions, Fe 2 O 3 had a better potential to reduce the toxic effects of CAT and HQ than TiO 2 .
(© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
References: Abugazleh MK, Rougeau B, Ali H (2020) Adsorption of catechol and hydroquinone on titanium oxide and iron (III) oxide. J Environ Chem Eng. 8. https://doi.org/10.1016/j.jece.2020.104180.
Alias N, Rosli SA, Sazalli NAH, Hamid HA, Arivalakan S, Umar SNH, Khim BK, Taib BN, Keat YK, Razak KA, Yee YF, Hussain Z, Bakar EA, Kamaruddin NF, Manaf AA, Uchiyama N, Kian TW, Matsuda A, Kawamura G, Sawada K, Matsumoto A, Lockman Z (2020) Metal oxide for heavy metal detection and removal. In Metal Oxide Powder Technologies. Elsevier, p 299–332. https://doi.org/10.1016/B978-0-12-817505-7.00015-4.
Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. 2014. https://doi.org/10.1155/2014/825910.
Ankley GT, Villeneuve DL (2006) The fathead minnow in aquatic toxicology: Past, present and future. Aquat. Toxicol. 78:91–102. https://doi.org/10.1016/j.aquatox.2006.01.018. (PMID: 10.1016/j.aquatox.2006.01.018)
Anku WW, Mamo MA, Govender PP (2017) Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods, In: Phenolic Compounds—Natural Sources, Importance and Applications. https://doi.org/10.5772/66927.
Ates M, Demir V, Adiguzel R, Arslan Z (2013) Bioaccumulation, Sub-acute Toxicity, and Tissue Distribution of Engineered Titanium Dioxide (TiO 2 ) Nanoparticles in Goldfish (Carassius auratus). J Nanomater. 2013:460518. https://doi.org/10.1155/2013/460518 . (PMID: 10.1155/2013/460518)
Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Environ Res Public Health 14:94. https://doi.org/10.3390/ijerph14010094. (PMID: 10.3390/ijerph14010094)
Babich H, Borenfreund E (1987) Fathead minnow FHM cells for use in in vitro cytotoxicity assays of aquatic pollutants. Ecotoxicol Environ Saf 14:78–87. https://doi.org/10.1016/0147-6513(87)90086-8. (PMID: 10.1016/0147-6513(87)90086-8)
Bahri S, Jonsson CM, Jonsson CL, Azzolini D, Sverjensky DA, Hazen RM (2011) Adsorption and surface complexation study of L-DOPA on rutile (α-TiO2) in NaCl solutions. Environ Sci Technol 45:3959–3966. https://doi.org/10.1021/es1042832. (PMID: 10.1021/es1042832)
Bährs H, Putschew A, Steinberg CEW (2013) Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH. Environ Sci Pollut Res 20:146–154. https://doi.org/10.1007/s11356-012-1132-5. (PMID: 10.1007/s11356-012-1132-5)
Blaise C, Férard JF (2005) Small-scale freshwater toxicity investigations, Toxicity Test Methods. https://doi.org/10.1007/1-4020-3120-3.
Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. https://doi.org/10.1021/nl052326h. (PMID: 10.1021/nl052326h)
Browning BD (2021) Assessing the toxicity of a reconstituted water simulating streams influenced by mountaintop mining in central appalachia. Master thesis, Marshall University, USA.
Calamari D, Galassi S, Setti F, Vighi M (1983) Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere 12:253–262. https://doi.org/10.1016/0045-6535(83)90168-6. (PMID: 10.1016/0045-6535(83)90168-6)
Canadian Dept. of the Environment and Dept. of Health (2008a) Screening assessment for 1,4-Benzenediol (hydroquinone), Chemical Abstract Service Registry Number (123-31-9), Canada. Available at: https://www.ec.gc.ca/ese-ees/3814237A-D088-4824-9ECB-643E32471DCC/batch1_123-31-9_en.pdf.
DeCaprio AP (1999) The toxicology of hydroquinone - Relevance to occupational and environmental exposure. Crit Rev Toxicol 29:283–330. https://doi.org/10.1080/10408449991349221. (PMID: 10.1080/10408449991349221)
DeGraeve GM, Geiger DL, Meyer JS, Bergman HL (1980) Acute and embryo-larval toxicity of phenolic compounds to aquatic biota. Arch Environ Contam Toxicol 9:557–568. https://doi.org/10.1007/BF01056935. (PMID: 10.1007/BF01056935)
Deisinger PJ, Hill TS, English JC (1996) Human exposure to naturally occurring hydroquinone. J Toxicol Environ Heal - Part A 47:31–46. https://doi.org/10.1080/009841096161915. (PMID: 10.1080/009841096161915)
Duan W, Meng F, Cui H, Lin Y, Wang G, Wu J (2018) Ecotoxicity of phenol and cresols to aquatic organisms: A review. Ecotoxicol Environ Saf 157:441–456. https://doi.org/10.1016/j.ecoenv.2018.03.089. (PMID: 10.1016/j.ecoenv.2018.03.089)
Dwyer FJ, Hardesty DK, Henke CE, Ingersoll CG, Whites DW, Augspurger T, Canfield TJ, Mount DR, Mayer FL (2004) Assessing contaminant sensitivity of endangered and threatened aquatic species: Part III. effluent toxicity tests. Arch Environ Contam Toxicol 48:174–183. https://doi.org/10.1007/s00244-004-0104-2. (PMID: 10.1007/s00244-004-0104-2)
El Morabet R (2018) Effects of outdoor air pollution on human health, in: Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11012-7.
Elmenaouar K, Benbrik R, Aamouche A (2017) Influence of C6H4(OH)2 isomers on water disinfection by photocatalysis: A computational study. Condens. Matter Phys. 20. https://doi.org/10.5488/CMP.20.23302.
Enguita FJ, Leitão AL (2013) Hydroquinone: Environmental pollution, toxicity, and microbial answers. Biomed Res Int. 2013:1–14. https://doi.org/10.1155/2013/542168. (PMID: 10.1155/2013/542168)
García-Araya JF, Beltrán FJ, Álvarez P, Masa FJ (2003) Activated carbon adsorption of some phenolic compounds present in agroindustrial wastewater. Adsorption 9:107–115. https://doi.org/10.1023/A:1024228708675. (PMID: 10.1023/A:1024228708675)
Geiger DL, Poirier SH, Brooke LT, Call DJ (1986) Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas): Volume III. University of Wisconsin-Superior, Center for Lake Superior Environmental Studies, USA.
Guerra R (2001) Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere 44:1737–1747. https://doi.org/10.1016/S0045-6535(00)00562-2. (PMID: 10.1016/S0045-6535(00)00562-2)
Karpińska J, Kotowska U (2019) Removal of organic pollution in the water environment. Water 11:2017. https://doi.org/10.3390/w11102017. (PMID: 10.3390/w11102017)
Kodavanti PRS, Royland JE, Sambasiva R, KRS, (2014) Toxicology of persistent organic pollutants, In: Reference Module in Biomedical Sciences. https://doi.org/10.1016/b978-0-12-801238-3.00211-7.
Lewandowski CM, Co-investigator N, Lewandowski CM (2015) Powder metal technologies and applications, In: ASM International: Materials Park, OH.
Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJGM, Hu M, Wang Y (2020) Rethinking Nano-TiO 2 Safety: Overview of Toxic Effects in Humans and Aquatic Animals. Small 16:2002019. https://doi.org/10.1002/smll.202002019. (PMID: 10.1002/smll.202002019)
MacHala L, Tuček J, Zbořil R (2011) Polymorphous transformations of nanometric iron(III) oxide: A review. Chem Mater 23:3255–3272. https://doi.org/10.1021/cm200397g. (PMID: 10.1021/cm200397g)
Milligan PW, Häggblom MM (1998) Biodegradation of resorcinol and catechol by denitrifying enrichment cultures. Environ Toxicol Chem 17:1456–1461. https://doi.org/10.1002/etc.5620170804. (PMID: 10.1002/etc.5620170804)
Ministry [Canada], Dept. of the Environment, Dept. of Health. (2008a) Screening assessment for the Challenge – 1,2- benzenediol (Catechol), Chemical Abstract Service Registry Number 120-80-9. https://www.ec.gc.ca/ese-ees/04FDC10E-0C72-41B2-8040-91B7BB43AE38/batch1_120-80-9_en.pdf.
Ministry Dave, PN, Chopda, LV, 2014. Application of iron oxide nanomaterials for the removal of heavy metals. J. Nanotechnol. 2014. https://doi.org/10.1155/2014/398569.
Mojoudi N, Mirghaffari N, Soleimani M, Shariatmadari H, Belver C, Bedia J (2019) Phenol adsorption on high microporous activated carbons prepared from oily sludge: Equilibrium, kinetic and thermodynamic studies. Sci Rep 9:19352. https://doi.org/10.1038/s41598-019-55794-4. (PMID: 10.1038/s41598-019-55794-4)
Mount DR, Gulley DD, Evans JM (1993) Salinity/toxicity relationships to predict the acute toxicity of produced waters to freshwater organisms, In: All Days. SPE, San Antonio, Texas, p. SPE-26007-MS. https://doi.org/10.2118/26007-MS.
Nagpal M, Kakkar R (2019) Use of metal oxides for the adsorptive removal of toxic organic pollutants. Sep Purif Technol. 211:522–539. https://doi.org/10.1016/j.seppur.2018.10.016. (PMID: 10.1016/j.seppur.2018.10.016)
National Toxicology Program (1989) Toxicology and carcinogenesis studies of hydroquinone (CAS No. 123-31-9) in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser 366:1–248.
Neilson AH, Allard A, Hynning P, Remberger M (1991) Distribution, fate and persistence of organochlorine compounds formed during production of bleached pulp. Toxicol Environ Chem 30:3–41. https://doi.org/10.1080/02772249109357638. (PMID: 10.1080/02772249109357638)
Netzeva T, Aptula A, Benfenati E, Cronin M, Gini G, Lessigiarska I, Maran U, Vracko M, Schuermann G (2005) Description of the Electronic Structure of Organic Chemicals Using Semiempirical and ab initio Methods for Development of Toxicological QSARs. J Chem Inform Comput Sci 45(1):106–114. p. JRC28383. (PMID: 10.1021/ci049747p)
Odumosu PO, Ekwe TO (2010) Identification and spectrophometric determination of hydroquinone levels in some cosmetic creams. African J Pharm Pharmacol 4:231–234.
Pakrashi S, Dalai S, Humayun A, Chakravarty S, Chandrasekaran N, Mukherjee A (2013) Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment. PLoS One 8:e74003. https://doi.org/10.1371/journal.pone.0074003. (PMID: 10.1371/journal.pone.0074003)
Rasalingam S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from wastewaters: Applications of TiO2-SiO2 mixed oxide materials. J Nanomater 2014:617405. https://doi.org/10.1155/2014/617405 . ID. (PMID: 10.1155/2014/617405)
Redfern PC, Zapol P, Curtiss LA, Rajh T, Thurnauer MC (2003) Computational studies of catechol and water interactions with titanium oxide nanoparticles. J Phys Chem B 107:11419–11427. https://doi.org/10.1021/jp0303669. (PMID: 10.1021/jp0303669)
Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA (1997) Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16:948–967. https://doi.org/10.1002/etc.5620160514. (PMID: 10.1002/etc.5620160514)
Saha NC, Bhunia F, Kaviraj A (1999) Toxicity of phenol to fish and aquatic ecosystems. Bull Environ Contam Toxicol 63:195–202. https://doi.org/10.1007/s001289900966. (PMID: 10.1007/s001289900966)
Schweigert N, Zehnder AJB, Eggen RIL (2001b) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91. https://doi.org/10.1046/j.1462-2920.2001.00176.x. (PMID: 10.1046/j.1462-2920.2001.00176.x)
Schweigert N, Hunziker RW, Escher BI, Eggen RIL (2001a) Acute toxicity of (chloro-)catechols and (chloro-)catechol–copper combinations in escherichia coli corresponds to their membrane toxicity in vitro. Environ Toxicol Chem 20:47–239. https://doi.org/10.1002/etc.5620200203. (PMID: 10.1002/etc.5620200203)
Shadnia H, Wright JS (2008) Understanding the toxicity of phenols: Using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms. Chem Res Toxicol 21:1197–1204. https://doi.org/10.1021/tx800058r. (PMID: 10.1021/tx800058r)
Sophia C, Lima EC (2018) Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 150:1–17. https://doi.org/10.1016/j.ecoenv.2017.12.026. (PMID: 10.1016/j.ecoenv.2017.12.026)
Subramanyam R, Mishra IM (2013) Critical review of anaerobic biodegradation of benzenediols: Catechol, resorcinol, and hydroquinone. J Hazardous Toxic Radioact Waste 17. https://doi.org/10.1061/(asce)hz.2153-5515.0000178.
U.S. Department of Health and Human Services (2008) Toxicological profile for phenol, USA.
U.S. Environmental Protection Agency (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, USA.
U.S. Food and Drug Administration (2009) Hydroquinone supporting information for toxicological evaluation, USA.
United Nations Environment Programme (2012) SIDS initial assessment report (SIAR): Hydroquinone, In: UNEP Publications. United Nations Environment Programme, United States of America.
Vasudevan D, Stone AT (1996) Adsorption of catechols, 2-aminophenols, and 1,2-phenylenediamines at the metal (hydr)oxide/water interface: Effect of ring substituants on the adsorption onto TiO2. Environ Sci Technol 30:1604–1613. https://doi.org/10.1021/es950615. (PMID: 10.1021/es950615)
Versteeg DJ, Stalmans M, Dyer SD, Janssen C (1997) Ceriodaphnia and daphnia: A comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere 34:869–892. https://doi.org/10.1016/S0045-6535(97)00014-3. (PMID: 10.1016/S0045-6535(97)00014-3)
Warnecke D, Duis K, Knacker T, Schüürmann G, Kühne R (2014) Review and enhancement of new risk assessment concepts under REACH. Federal Environment Agency, Germany.
Watanabe KH, Jensen KM, Orlando EF, Ankley GT (2007) What is normal? A characterization of the values and variability in reproductive endpoints of the fathead minnow, Pimephales promelas. Comp Biochem Physiol Part C Toxicol Pharmacol. 146:348–356. https://doi.org/10.1016/j.cbpc.2007.04.015. (PMID: 10.1016/j.cbpc.2007.04.015)
Wu Y, Zhu P, Reddy MV, Chowdari BVR, Ramakrishna S (2014) Maghemite nanoparticles on electrospun CNFs template as prospective lithium-ion battery anode. ACS Appl Mater Interfaces 6:1951–1958. https://doi.org/10.1021/am404939q. (PMID: 10.1021/am404939q)
Yang K, Jiang Y, Yang J, Lin D (2018) Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C. Environ Pollut 223:64–70. https://doi.org/10.1016/j.envpol.2017.10.035. (PMID: 10.1016/j.envpol.2017.10.035)
Zheng C, Zhao L, Zhou X, Fu Z, Li A (2013) Treatment technologies for organic wastewater, In: Water Treatment. InTech. https://doi.org/10.5772/52665.
فهرسة مساهمة: Keywords: Aquatic toxicity; Freshwater organisms; LC50; Metal oxides; Phenolic compounds
المشرفين على المادة: 15FIX9V2JP (titanium dioxide)
XV74C1N1AE (hydroquinone)
0 (Hydroquinones)
LF3AJ089DQ (catechol)
0 (Catechols)
0 (Oxides)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20230612 Date Completed: 20230630 Latest Revision: 20230630
رمز التحديث: 20230630
DOI: 10.1007/s10646-023-02672-5
PMID: 37306764
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-3017
DOI:10.1007/s10646-023-02672-5