دورية أكاديمية

Genome editing of a rice CDP-DAG synthase confers multipathogen resistance.

التفاصيل البيبلوغرافية
العنوان: Genome editing of a rice CDP-DAG synthase confers multipathogen resistance.
المؤلفون: Sha G; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Sun P; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Kong X; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Han X; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Sun Q; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Fouillen L; Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France., Zhao J; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China.; College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China., Li Y; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Yang L; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Wang Y; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Gong Q; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Zhou Y; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Zhou W; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Jain R; Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA.; Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA., Gao J; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China., Huang R; National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China., Chen X; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China.; College of Plant Protection, Anhui Agricultural University, Hefei, China., Zheng L; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Zhang W; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Qin Z; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China., Zhou Q; BGI-Shenzhen, Shenzhen, China., Zeng Q; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China., Xie K; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China., Xu J; Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China., Chiu TY; BGI-Shenzhen, Shenzhen, China., Guo L; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China., Mortimer JC; Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA.; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia., Boutté Y; Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France., Li Q; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China., Kang Z; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China., Ronald PC; Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA. pcronald@ucdavis.edu.; Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA. pcronald@ucdavis.edu.; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA. pcronald@ucdavis.edu., Li G; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China. li4@mail.hzau.edu.cn.; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China. li4@mail.hzau.edu.cn.; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China. li4@mail.hzau.edu.cn.; The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China. li4@mail.hzau.edu.cn.; Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA. li4@mail.hzau.edu.cn.; Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA. li4@mail.hzau.edu.cn.
المصدر: Nature [Nature] 2023 Jun; Vol. 618 (7967), pp. 1017-1023. Date of Electronic Publication: 2023 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Disease Resistance*/genetics , Gene Editing*/methods , Oryza*/enzymology , Oryza*/genetics , Oryza*/microbiology , Plant Breeding*/methods , Plant Diseases*/genetics , Plant Diseases*/microbiology , Diacylglycerol Cholinephosphotransferase*/genetics , Diacylglycerol Cholinephosphotransferase*/metabolism, Genome, Plant/genetics ; Phosphatidylinositols/metabolism ; Alleles ; Phosphatidylinositol 4,5-Diphosphate/metabolism
مستخلص: The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes 1 . Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis 2 . Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2 ). In rice, PtdIns(4,5)P 2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor 3 . By using targeted genome editing, we obtained an allele of RBL1, named RBL1 Δ12 , which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: CRISPR J. 2023 Aug;6(4):308-309. (PMID: 37594267)
Comment in: Trends Plant Sci. 2023 Dec;28(12):1344-1346. (PMID: 37648632)
References: Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021). (PMID: 3358105710.1016/j.cell.2021.01.005)
Liu, X., Yin, Y., Wu, J. & Liu, Z. Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nat. Commun. 5, 4244 (2014). (PMID: 2496874010.1038/ncomms5244)
Qin, L. et al. Specific recruitment of phosphoinositide species to the plant–pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal infection. Plant Cell 32, 1665–1688 (2020). (PMID: 32156686720393210.1105/tpc.19.00970)
Zhu, H., Li, C. & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661–677 (2020). (PMID: 3297335610.1038/s41580-020-00288-9)
Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019). (PMID: 3083549310.1146/annurev-arplant-050718-100049)
Sakulkoo, W. et al. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 359, 1399–1403 (2018). (PMID: 2956771210.1126/science.aaq0892)
Li, W., Chern, M., Yin, J., Wang, J. & Chen, X. Recent advances in broad-spectrum resistance to the rice blast disease. Curr. Opin. Plant Biol. 50, 114–120 (2019). (PMID: 3116339410.1016/j.pbi.2019.03.015)
Song, W.-Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806 (1995). (PMID: 852537010.1126/science.270.5243.1804)
Li, W. et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114–126 (2017). (PMID: 2866611310.1016/j.cell.2017.06.008)
Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962–965 (2017). (PMID: 2815424010.1126/science.aai8898)
Wang, J. et al. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028 (2018). (PMID: 3019040610.1126/science.aat7675)
Gao, M. et al. Ca 2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 184, 5391–5404 (2021). (PMID: 3459758410.1016/j.cell.2021.09.009)
Hu, X.-H. et al. A natural allele of proteasome maturation factor improves rice resistance to multiple pathogens. Nat. Plants 9, 228–237 (2023). (PMID: 3664682910.1038/s41477-022-01327-3)
Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363 (2009). (PMID: 1922900010.1126/science.1166453)
Wang, N. et al. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 185, 2961–2974 (2022). (PMID: 3583976010.1016/j.cell.2022.06.027)
Büschges, R. et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705 (1997). (PMID: 905450910.1016/S0092-8674(00)81912-1)
Li, S. et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455–460 (2022). (PMID: 3514040310.1038/s41586-022-04395-9)
Lorrain, S., Vailleau, F., Balagué, C. & Roby, D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends Plant Sci. 8, 263–271 (2003). (PMID: 1281866010.1016/S1360-1385(03)00108-0)
Xing, J., Zhang, L., Duan, Z. & Lin, J. Coordination of phospholipid-based signaling and membrane trafficking in plant immunity. Trends Plant Sci. 26, 407–420 (2021). (PMID: 3330910110.1016/j.tplants.2020.11.010)
Liu, L., Waters, D. L. E., Rose, T. J., Bao, J. & King, G. J. Phospholipids in rice: significance in grain quality and health benefits: a review. Food Chem. 139, 1133–1145 (2013). (PMID: 2356121910.1016/j.foodchem.2012.12.046)
Shimada, T. L. et al. Enrichment of phosphatidylinositol 4,5-bisphosphate in the extra-invasive hyphal membrane promotes colletotrichum infection of Arabidopsis thaliana. Plant Cell Physiol. 60, 1514–1524 (2019). (PMID: 3098919810.1093/pcp/pcz058)
Li, G. et al. The sequences of 1504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. Plant Cell 29, 1218–1231 (2017). (PMID: 28576844550245510.1105/tpc.17.00154)
You, Q. et al. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance. Cell Host Microbe 20, 758–769 (2016). (PMID: 2797843510.1016/j.chom.2016.10.023)
Zhao, X. et al. A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. J. Exp. Bot. 72, 608–622 (2021). (PMID: 3299585710.1093/jxb/eraa450)
Liu, Q. et al. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice. Plant Cell 29, 345–359 (2017). (PMID: 28100706535418910.1105/tpc.16.00650)
Zhou, Y. et al. Extraplastidial cytidinediphosphate diacylglycerol synthase activity is required for vegetative development in Arabidopsis thaliana. Plant J. 75, 867–879 (2013). (PMID: 2371124010.1111/tpj.12248)
Blunsom, N. J. & Cockcroft, S. CDP-diacylglycerol synthases (CDS): gateway to phosphatidylinositol and cardiolipin synthesis. Front. Cell Dev. Biol. 8, 63 (2020). (PMID: 32117988701866410.3389/fcell.2020.00063)
Li, J. & Wang, X. Phospholipase D and phosphatidic acid in plant immunity. Plant Sci. 279, 45–50 (2019). (PMID: 3070949210.1016/j.plantsci.2018.05.021)
Khang, C. H. et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388–1403 (2010). (PMID: 20435900287973810.1105/tpc.109.069666)
Du, X. Q., Yao, H. Y., Luo, P., Tang, X. C. & Xue, H. W. Cytidinediphosphate diacylglycerol synthase—mediated phosphatidic acid metabolism is crucial for early embryonic development of Arabidopsis. PLoS Genet. 18, e1010320 (2022). (PMID: 35877676935220110.1371/journal.pgen.1010320)
Hong, Y., Yuan, S., Sun, L., Wang, X. & Hong, Y. Cytidinediphosphate-diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. Plant J. 94, 1038–1050 (2018). (PMID: 2960414010.1111/tpj.13916)
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006). (PMID: 1703599510.1038/nature05185)
Kale, S. D. et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142, 284–295 (2010); erratum 142, 981–983 (2010). (PMID: 2065546910.1016/j.cell.2010.06.008)
Liu, L. et al. The Xanthomonas type III effector XopAP prevents stomatal closure by interfering with vacuolar acidification. J. Integr. Plant Biol. 64, 1994–2008 (2022). (PMID: 3597279610.1111/jipb.13344)
Wang, H. et al. A plant virus hijacks phosphatidylinositol-3,5-bisphosphate to escape autophagic degradation in its insect vector. Autophagy 19, 1128–1143 (2023). (PMID: 3609359410.1080/15548627.2022.2116676)
Marković, V. & Jaillais, Y. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. New Phytol. 235, 867–874 (2022). (PMID: 3558697210.1111/nph.18258)
Boni, R. et al. Pathogen-inducible Ta-Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnol. J. 16, 245–253 (2018). (PMID: 2856199410.1111/pbi.12765)
Gruner, K. et al. Evidence for allele-specific levels of enhanced susceptibility of wheat mlo mutants to the hemibiotrophic fungal pathogen Magnaporthe oryzae pv. Triticum. Genes 11, 517 (2020). (PMID: 32392723772013410.3390/genes11050517)
Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G.-L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71, 575–603 (2020). (PMID: 3219705210.1146/annurev-arplant-010720-022215)
Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019). (PMID: 31659337683151410.1038/s41587-019-0267-z)
Lu, Y. et al. Targeted, efficient sequence insertion and replacement in rice. Nat. Biotechnol. 38, 1402–1407 (2020). (PMID: 3263230210.1038/s41587-020-0581-5)
Li, G. et al. Genome-wide sequencing of 41 rice (Oryza sativa L.) mutated lines reveals diverse mutations induced by fast-neutron irradiation. Mol. Plant 9, 1078–1081 (2016). (PMID: 2701838910.1016/j.molp.2016.03.009)
Jain, R. et al. Genome sequence of the model rice variety KitaakeX. BMC Genom. 20, 905 (2019). (PMID: 10.1186/s12864-019-6262-4)
Tang, J. et al. GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytol. 228, 1880–1896 (2020). (PMID: 3254268010.1111/nph.16741)
Park, C.-J. & Ronald, P. C. Cleavage and nuclear localization of the rice XA21 immune receptor. Nat. Commun. 3, 920 (2012). (PMID: 2273544810.1038/ncomms1932)
Zhou, X. et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc. Natl Acad. Sci. USA 115, 3174–3179 (2018). (PMID: 29432165586653310.1073/pnas.1705927115)
Li, G. et al. MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ. Microbiol. 19, 1959–1974 (2017). (PMID: 2824424010.1111/1462-2920.13710)
Li, G. B. et al. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. Mol. Plant 15, 1790–1806 (2022). (PMID: 3624512210.1016/j.molp.2022.10.009)
Li, Q. et al. A Phytophthora capsici effector targets ACD11 binding partners that regulate ROS-mediated defense response in Arabidopsis. Mol. Plant 12, 565–581 (2019). (PMID: 3070356410.1016/j.molp.2019.01.018)
DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–2030 (1999). (PMID: 1052152914410110.1105/tpc.11.10.2013)
Jones, K. et al. Disruption of the interfacial membrane leads to Magnaporthe oryzae effector re-location and lifestyle switch during rice blast disease. Front. Cell Dev. Biol. 9, 681734 (2021). (PMID: 34222251824880310.3389/fcell.2021.681734)
Chen, X. et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc. Natl Acad. Sci. USA 107, 8029–8034 (2010). (PMID: 20385831286785110.1073/pnas.0912311107)
Luu, D. D. et al. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. Proc. Natl Acad. Sci. USA 116, 8525–8534 (2019). (PMID: 30948631648671610.1073/pnas.1818275116)
Fan, J. et al. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host Microbe 23, 498–510 (2018). (PMID: 29576481626793010.1016/j.chom.2018.03.003)
Chen, X. et al. The ‘pears and lemons’ protein UvPal1 regulates development and virulence of Ustilaginoidea virens. Environ. Microbiol. 22, 5414–5432 (2020). (PMID: 3307349110.1111/1462-2920.15284)
Fan, J. et al. The false smut pathogen Ustilaginoidea virens requires rice stamens for false smut ball formation. Environ. Microbiol. 22, 646–659 (2020). (PMID: 3179752310.1111/1462-2920.14881)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the [Formula: see text] method. Methods 25, 402–408 (2001). (PMID: 1184660910.1006/meth.2001.1262)
Haselier, A., Akbari, H., Weth, A., Baumgartner, W. & Frentzen, M. Two closely related genes of Arabidopsis encode plastidial cytidinediphosphate diacylglycerol synthases essential for photoautotrophic growth. Plant Physiol. 153, 1372–1384 (2010). (PMID: 20442275289990810.1104/pp.110.156422)
Durowoju, I. B., Bhandal, K. S, Hu, J., Carpick, B. & Kirkitadze, M. Differential scanning calorimetry — a method for assessing the thermal stability and conformation of protein antigen. J. Vis. Exp. 121, e55262 (2017).
Li, Q. et al. Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. Plant Cell 27, 86–103 (2015). (PMID: 25564555433058510.1105/tpc.114.134338)
Lu, S., Liu, H., Jin, C., Li, Q. & Guo, L. An efficient and comprehensive plant glycerolipids analysis approach based on high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer. Plant Direct 3, e00183 (2019). (PMID: 31832598685860510.1002/pld3.183)
Ito, Y. et al. Sphingolipids mediate polar sorting of PIN2 through phosphoinositide consumption at the trans-Golgi network. Nat. Commun. 12, 4267 (2021). (PMID: 34257291827784310.1038/s41467-021-24548-0)
He, F., Zhang, F., Sun, W., Ning, Y. & Wang, G.-L. A versatile vector toolkit for functional analysis of rice genes. Rice 11, 27 (2018). (PMID: 29679176591032810.1186/s12284-018-0220-7)
Santoni, V. Plant plasma membrane protein extraction and solubilization for proteomic analysis. Methods Mol. Biol. 355, 93–109 (2007). (PMID: 17093306)
Yang, H. et al. Pore architecture of TRIC channels and insights into their gating mechanism. Nature 538, 537–541 (2016). (PMID: 2769842010.1038/nature19767)
Colin, L. et al. Imaging the living plant cell: from probes to quantification. Plant Cell 34, 247–272 (2022). (PMID: 3458641210.1093/plcell/koab237)
Tang, N. et al. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28, 2161–2177 (2016). (PMID: 27468891505979410.1105/tpc.16.00171)
Zhai, K. et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 601, 245–251 (2022). (PMID: 3491211910.1038/s41586-021-04219-2)
Gutteridge, S. & Gatenby, A. A. Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7, 809–819 (1995). (PMID: 1224238716087010.2307/3870038)
Simon, M. L. et al. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 77, 322–337 (2014). (PMID: 2414778810.1111/tpj.12358)
Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl Acad. Sci. USA 112, 3570–3575 (2015). (PMID: 25733849437191710.1073/pnas.1420294112)
Minkenberg, B., Zhang, J., Xie, K. & Yang, Y. CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis. Plant Biotechnol. J. 17, 5–8 (2019). (PMID: 3032510210.1111/pbi.13025)
Xie, X. et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol. Plant 10, 1246–1249 (2017). (PMID: 2862454410.1016/j.molp.2017.06.004)
IRRI. Standard Evaluation System for Rice (SES) 17–18 (International Rice Research Institute, 2002).
Yang, L. et al. The genome of the rice variety LTH provides insight into its universal susceptibility mechanism to worldwide rice blast fungal strains. Comput. Struct. Biotechnol. J. 20, 1012–1026 (2022). (PMID: 35242291886649310.1016/j.csbj.2022.01.030)
المشرفين على المادة: 0 (Phosphatidylinositols)
0 (Phosphatidylinositol 4,5-Diphosphate)
EC 2.7.8.2 (Diacylglycerol Cholinephosphotransferase)
تواريخ الأحداث: Date Created: 20230614 Date Completed: 20230705 Latest Revision: 20231115
رمز التحديث: 20240628
DOI: 10.1038/s41586-023-06205-2
PMID: 37316672
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06205-2