دورية أكاديمية

Functional differences in agonist-induced plasma membrane expression of Orai1α and Orai1β.

التفاصيل البيبلوغرافية
العنوان: Functional differences in agonist-induced plasma membrane expression of Orai1α and Orai1β.
المؤلفون: Jardin I; Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain., Alvarado S; Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain., Sanchez-Collado J; Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain., Nieto-Felipe J; Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain., Lopez JJ; Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain., Salido GM; Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain., Rosado JA; Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain.
المصدر: Journal of cellular physiology [J Cell Physiol] 2023 Sep; Vol. 238 (9), pp. 2050-2062. Date of Electronic Publication: 2023 Jun 18.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Calcium Channels*/genetics , Calcium Channels*/metabolism , Calcium Release Activated Calcium Channels*/metabolism , ORAI1 Protein*/antagonists & inhibitors , ORAI1 Protein*/genetics , ORAI1 Protein*/metabolism, Calcium/metabolism ; Calcium Signaling ; Cell Membrane/metabolism ; Stromal Interaction Molecule 1/metabolism ; Thapsigargin/pharmacology ; Humans ; HEK293 Cells
مستخلص: Orai1 is the pore-forming subunit of the store-operated Ca 2+ release-activated Ca 2+ (CRAC) channels involved in a variety of cellular functions. Two Orai1 variants have been identified, the long form, Orai1α, containing 301 amino acids, and the short form, Orai1β, which arises from alternative translation initiation from methionines 64 or 71, in Orai1α. Orai1 is mostly expressed in the plasma membrane, but a subset of Orai1 is located in intracellular compartments. Here we show that Ca 2+ store depletion leads to trafficking and insertion of compartmentalized Orai1α in the plasma membrane via a mechanism that is independent on changes in cytosolic free-Ca 2+ concentration, as demonstrated by cell loading with the fast intracellular Ca 2+ chelator dimethyl BAPTA in the absence of extracellular Ca 2+ . Interestingly, thapsigargin (TG) was found to be unable to induce translocation of Orai1β to the plasma membrane when expressed individually; by contrast, when Orai1β is co-expressed with Orai1α, cell treatment with TG induced rapid trafficking and insertion of compartmentalized Orai1β in the plasma membrane. Translocation of Orai1 forms to the plasma membrane was found to require the integrity of the actin cytoskeleton. Finally, expression of a dominant negative mutant of the small GTPase ARF6, and ARF6-T27N, abolished the translocation of compartmentalized Orai1 variants to the plasma membrane upon store depletion. These findings provide new insights into the mechanism that regulate the plasma membrane abundance of Orai1 variants after Ca 2+ store depletion.
(© 2023 The Authors. Journal of Cellular Physiology published by Wiley Periodicals LLC.)
References: Ahmad, M., Narayanasamy, S., Ong, H. L., & Ambudkar, I. (2022). STIM proteins and regulation of SOCE in ER-PM junctions. Biomolecules, 12(8), 1152. https://doi.org/10.3390/biom12081152.
Aikawa, Y., & Martin, T. F. J. (2003). ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. Journal of Cell Biology, 162(4), 647-659. https://doi.org/10.1083/jcb.200212142.
Chen, Y. J., Chang, C. L., Lee, W. R., & Liou, J. (2017). RASSF4 controls SOCE and ER-PM junctions through regulation of PI(4,5)P(2). Journal of Cell Biology, 216(7), 2011-2025. https://doi.org/10.1083/jcb.201606047.
Cheng, K. T., Liu, X., Ong, H. L., Swaim, W., & Ambudkar, I. S. (2011). Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLoS Biology, 9(3), e1001025. https://doi.org/10.1371/journal.pbio.1001025.
Conrad, R., Stölting, G., Hendriks, J., Ruello, G., Kortzak, D., Jordan, N., Gensch, T., & Hidalgo, P. (2018). Rapid turnover of the cardiac L-type Ca(V)1.2 channel by endocytic recycling regulates its cell surface availability. iScience, 7, 1-15. https://doi.org/10.1016/j.isci.2018.08.012.
Cross, B. M., Hack, A., Reinhardt, T. A., & Rao, R. (2013). SPCA2 regulates Orai1 trafficking and store independent Ca2+ entry in a model of lactation. PLoS One, 8(6), e67348. https://doi.org/10.1371/journal.pone.0067348.
Desai, P. N., Zhang, X., Wu, S., Janoshazi, A., Bolimuntha, S., Putney, J. W., & Trebak, M. (2015). Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Science Signaling, 8(387), ra74. https://doi.org/10.1126/scisignal.aaa8323.
de Souza, L. B., Ong, H. L., Liu, X., & Ambudkar, I. S. (2015). Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1853(10 Pt A), 2709-2721. https://doi.org/10.1016/j.bbamcr.2015.07.019.
Emrich, S. M., Yoast, R. E., & Trebak, M. (2022). Physiological functions of CRAC channels. Annual Review of Physiology, 84, 355-379. https://doi.org/10.1146/annurev-physiol-052521-013426.
Emrich, S. M., Yoast, R. E., Xin, P., Arige, V., Wagner, L. E., Hempel, N., Gill, D. L., Sneyd, J., Yule, D. I., & Trebak, M. (2021). Omnitemporal choreographies of all five STIM/Orai and IP3Rs underlie the complexity of mammalian Ca2+ signaling. Cell Reports, 34(9), 108760. https://doi.org/10.1016/j.celrep.2021.108760.
Fukushima, M., Tomita, T., Janoshazi, A., & Putney, J. W. (2012). Alternative translation initiation gives rise to two isoforms of Orai1 with distinct plasma membrane mobilities. Journal of Cell Science, 125(Pt 18), 4354-4361. https://doi.org/10.1242/jcs.104919.
Galán, C., Dionisio, N., Smani, T., Salido, G. M., & Rosado, J. A. (2011). The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochemical Pharmacology, 82(4), 400-410. https://doi.org/10.1016/j.bcp.2011.05.017.
Hodeify, R., Nandakumar, M., Own, M., Courjaret, R. J., Graumann, J., Hubrack, S. Z., & Machaca, K. (2018). The CCT chaperonin is a novel regulator of Ca2+ signaling through modulation of Orai1 trafficking. Science Advances, 4(9), eaau1935. https://doi.org/10.1126/sciadv.aau1935.
Hodeify, R., Selvaraj, S., Wen, J., Arredouani, A., Hubrack, S., Dib, M., Al-Thani, S. N., McGraw, T., & Machaca, K. (2015). A STIM1-dependent ‘trafficking trap’ mechanism regulates Orai1 plasma membrane residence and Ca2+ influx levels. Journal of Cell Science, 128(16), 3143-3154. https://doi.org/10.1242/jcs.172320.
Jardin, I., Diez-Bello, R., Lopez, J., Redondo, P., Salido, G., Smani, T., & Rosado, J. (2018). TRPC6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of Orai1 and Orai3 surface exposure. Cancers, 10(9), 331. https://doi.org/10.3390/cancers10090331.
Jardin, I., Lopez, J. J., Salido, G. M., & Rosado, J. A. (2008). Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. Journal of Biological Chemistry, 283(37), 25296-25304. https://doi.org/10.1074/jbc.M802904200.
Kim, M. S., Zeng, W., Yuan, J. P., Shin, D. M., Worley, P. F., & Muallem, S. (2009). Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. Journal of Biological Chemistry, 284(15), 9733-9741. https://doi.org/10.1074/jbc.M808097200.
Lunz, V., Romanin, C., & Frischauf, I. (2019). STIM1 activation of Orai1. Cell Calcium, 77, 29-38. https://doi.org/10.1016/j.ceca.2018.11.009.
Nieto-Felipe, J., Sanchez-Collado, J., Jardin, I., Salido, G. M., Lopez, J. J., & Rosado, J. A. (2023). The store-operated Ca2+ channel Orai1α is required for agonist-evoked NF-κB activation by a mechanism dependent on PKCβ2. Journal of Biological Chemistry, 299(2), 102882. https://doi.org/10.1016/j.jbc.2023.102882.
Sanchez-Collado, J., Lopez, J. J., Jardin, I., Berna-Erro, A., Camello, P. J., Cantonero, C., Smani, T., Salido, G. M., & Rosado, J. A. (2022). Orai1α, but not Orai1β, co-localizes with TRPC1 and is required for its plasma membrane location and activation in HeLa cells. Cellular and Molecular Life Sciences, 79(1), 33. https://doi.org/10.1007/s00018-021-04098-w.
Sanchez-Collado, J., Lopez, J. J., Jardin, I., Camello, P. J., Falcon, D., Regodon, S., Salido, G. M., Smani, T., & Rosado, J. A. (2019). Adenylyl cyclase type 8 overexpression impairs phosphorylation-dependent Orai1 inactivation and promotes migration in MDA-MB-231 breast cancer cells. Cancers, 11(11), 1624. https://doi.org/10.3390/cancers11111624.
Woodard, G. E., Salido, G. M., & Rosado, J. A. (2008). Enhanced exocytotic-like insertion of Orai1 into the plasma membrane upon intracellular Ca2+ store depletion. American Journal of Physiology-Cell Physiology, 294(6), C1323-C1331.
Yeh, Y. C., Lin, Y. P., Kramer, H., & Parekh, A. B. (2020). Single-nucleotide polymorphisms in Orai1 associated with atopic dermatitis inhibit protein turnover, decrease calcium entry and disrupt calcium-dependent gene expression. Human Molecular Genetics, 29(11), 1808-1823. https://doi.org/10.1093/hmg/ddz223.
Yen, M., & Lewis, R. S. (2019). Numbers count: How STIM and Orai stoichiometry affect store-operated calcium entry. Cell Calcium, 79, 35-43. https://doi.org/10.1016/j.ceca.2019.02.002.
Yoast, R. E., Emrich, S. M., Zhang, X., Xin, P., Johnson, M. T., Fike, A. J., Walter, V., Hempel, N., Yule, D. I., Sneyd, J., Gill, D. L., & Trebak, M. (2020). The native ORAI channel trio underlies the diversity of Ca2+ signaling events. Nature Communications, 11(1), 2444. https://doi.org/10.1038/s41467-020-16232-6.
Yu, F., Sun, L., & Machaca, K. (2010). Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. Journal of Cell Biology, 191(3), 523-535. https://doi.org/10.1083/jcb.201006022.
Zhang, X., Pathak, T., Yoast, R., Emrich, S., Xin, P., Nwokonko, R. M., Johnson, M., Wu, S., Delierneux, C., Gueguinou, M., Hempel, N., Putney, J. W., Gill, D. L., & Trebak, M. (2019). A calcium/cAMP signaling loop at the ORAI1 mouth drives channel inactivation to shape NFAT induction. Nature Communications, 10(1), 1971. https://doi.org/10.1038/s41467-019-09593-0.
Zhou, Y., Cai, X., Nwokonko, R. M., Loktionova, N. A., Wang, Y., & Gill, D. L. (2017). The STIM-Orai coupling interface and gating of the Orai1 channel. Cell Calcium, 63, 8-13. https://doi.org/10.1016/j.ceca.2017.01.001.
فهرسة مساهمة: Keywords: ARF6; Orai1α; Orai1β; actin cytoskeleton; plasma membrane; store-operated Ca2+ entry
المشرفين على المادة: SY7Q814VUP (Calcium)
0 (Calcium Channels)
0 (Calcium Release Activated Calcium Channels)
0 (ORAI1 Protein)
0 (Stromal Interaction Molecule 1)
67526-95-8 (Thapsigargin)
تواريخ الأحداث: Date Created: 20230619 Date Completed: 20230925 Latest Revision: 20230925
رمز التحديث: 20230926
DOI: 10.1002/jcp.31055
PMID: 37332264
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.31055