دورية أكاديمية

Escherichia coli O157:H7 strains in bovine carcasses and the impact on the animal production chain.

التفاصيل البيبلوغرافية
العنوان: Escherichia coli O157:H7 strains in bovine carcasses and the impact on the animal production chain.
المؤلفون: Dos Santos GF; Postgraduate in Quality Management and Hygiene and Technology of Products of Animal Origin, Ifope Educacional, Belo Horizonte, Brazil., de Sousa FG; Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, 6627 Antônio Carlos Av, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil. fgaias@outlook.com., Beier SL; Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, 6627 Antônio Carlos Av, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil., Mendes ACR; Department of Veterinary Medicine, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil., Leão AMGES; Department of Veterinary Medicine, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil.
المصدر: Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Braz J Microbiol] 2023 Sep; Vol. 54 (3), pp. 2243-2251. Date of Electronic Publication: 2023 Jun 19.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Brazil NLM ID: 101095924 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1678-4405 (Electronic) Linking ISSN: 15178382 NLM ISO Abbreviation: Braz J Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : Switzerland, AG : Springer International Publishing
Original Publication: Rio de Janeiro, RJ, Brasil : Sociedade Brasileira de Microbiologia
مواضيع طبية MeSH: Escherichia coli O157*/genetics , Shiga-Toxigenic Escherichia coli*/genetics , Escherichia coli Infections*/epidemiology , Escherichia coli Infections*/veterinary , Escherichia coli Infections*/microbiology , Foodborne Diseases*/microbiology , Escherichia coli Proteins*, Animals ; Cattle
مستخلص: Foodborne diseases are characterized by conditions that can induce symptomatic illnesses in their carriers, and therefore represent a serious problem. They are important conditions from a clinical and epidemiological point of view, and are associated with the occurrence of serious public health problems, with a strong impact on morbidity and mortality. The Escherichia coli (E. coli) is an enterobacterium associated with enteric conditions of variable intensity and which are accompanied by blood. The transmission routes are mainly based on the consumption of contaminated food and water sources. Shiga toxin-producing E. coli (STEC) are considered a serogroup of E. coli, are capable of producing Shiga-type toxins (Stx 1 and Stx 2) and the O157:H7 strain is one of the best-known serotypes. The early detection of this pathogen is very important, especially due to the capacity of contamination of carcasses destined for food consumption and supply of productive markets. Sanitary protocols must be developed and constantly reviewed in order to prevent/control the presence of the pathogen.
(© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.)
References: USDA - United States Department of Agriculture (2022) Livestock and poultry: world markets and trade.  https://www.nal.usda.gov/ . Accessed 21 Jan 2022.
WHO - World Health Organization (2015) WHO estimates of the global burden of foodborne diseases. https://www.paho.org/hq/dmdocuments/2015/2015-cha-estimates-global-burden-foodborne-summary.pdf . Accessed 26 Jun 2022.
Castro VS, Carvalho RCT, Conte-Junior CA et al (2017) Shiga-toxin producing Escherichia coli: pathogenicity, supershedding, diagnostic methods, occurrence, and foodborne outbreaks. Compr Rev Food Sci Food Saf 16:1269–1280. https://doi.org/10.1111/1541-4337.12302. (PMID: 10.1111/1541-4337.1230233371584)
Castro VS, Figueiredo EES, Stanford K et al (2019) Shiga-toxin producing Escherichia coli in Brazil: a systematic review. Microorganisms 7:1–16. https://doi.org/10.3390/microorganisms7050137. (PMID: 10.3390/microorganisms7050137)
Santos ECC, Neto AC, Castro VS, Carvalho RCT, Figueiredo EES (2017) Evaluation of the sanitary conditions of head meat, esophagus, diaphragm meat, and boning scrap processing. J Food Qual 2017:e3230596. https://doi.org/10.1155/2017/3230596. (PMID: 10.1155/2017/3230596)
Zaheer R, Dugat-Bony E, Holman D et al (2017) Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine. PLoS ONE 12:1–15. https://doi.org/10.1371/journal.pone.0170050. (PMID: 10.1371/journal.pone.0170050)
Galié S, García-Gutiérrez C, Miguélez EM et al (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 9:1–18. https://doi.org/10.3389/fmicb.2018.00898. (PMID: 10.3389/fmicb.2018.00898)
Brasil - Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica (2010) Manual Integrado de Vigilância, Prevenção e Controle de doenças transmitidas por alimentos. Editora do Ministério da Saúde, Brasília.
Croxen MA, Law RJ, Scholz R et al (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin MicrobioL Rev 26:822–880. https://doi.org/10.1128/cmr.00022-13. (PMID: 10.1128/cmr.00022-13240928573811233)
Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43. (PMID: 10.1038/nrmicro.2016.43271406885648345)
Obaidat MM (2020) Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comp Immunol Microbiol Infect Dis 70:101447. https://doi.org/10.1016/j.cimid.2020.101447. (PMID: 10.1016/j.cimid.2020.10144732105836)
Gomes TAT, Elias WP, Scaletsky ICA et al (2016) Diarrheagenic Escherichia coli. Braz. J Microbiol 47:3–30. https://doi.org/10.1016/j.bjm.2016.10.015. (PMID: 10.1016/j.bjm.2016.10.015)
Paletta ACC, Castro VS, Conte-Junior CA (2019) Shiga toxin-producing and enteroaggregative Escherichia coli in animal, foods, and humans: pathogenicity mechanisms, detection methods, and epidemiology. Curr Microbiol 77:612–620. https://doi.org/10.1007/s00284-019-01842-1. (PMID: 10.1007/s00284-019-01842-131834432)
Feng PCH, Delannoy S, Lacher DW et al (2017) Shiga toxin-producing serogroup O91 Escherichia coli strains isolated from food and environmental samples. Appl Environ Microbiol 83:1–13. https://doi.org/10.1128/AEM.01231-17. (PMID: 10.1128/AEM.01231-17)
Byrne L, Adams N, Jenkins C (2020) Association between Shiga toxin–producing Escherichia coli O157:H7 stx gene subtype and disease severity, England, 2009–2019. Emerg Infect Dis 26:2394–2400. https://doi.org/10.3201/eid2610.200319. (PMID: 10.3201/eid2610.200319329467207510717)
Carter MQ, Louie JW, Feng D, Zhong W, Brandl MT (2016) Curli fimbriae are conditionally required in Escherichia coli O157: H7 for initial attachment and biofilm formation. Food Microbiol 57:81–89. https://doi.org/10.1016/j.fm.2016.01.006. (PMID: 10.1016/j.fm.2016.01.00627052705)
Bowen EE, Coward RJ (2017) Advances in our understanding of the pathogenesis of hemolytic uremic syndromes. Am J Physiol Renal Physiol 314:F454–F461. https://doi.org/10.1152/ajprenal.00376.2017. (PMID: 10.1152/ajprenal.00376.2017291671715899223)
Cha W, Fratamico PM, Ruth LE, Bowman AS, Nolting JM, Manning SD et al (2018) Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: implications on public health. Int J Food Microbiol 264:8–15. https://doi.org/10.1016/j.ijfoodmicro.2017.10.017. (PMID: 10.1016/j.ijfoodmicro.2017.10.01729080423)
Woube Y, Abdella E, Faraj R, Perry R, Reddy G et al (2021) Prevalence and concentration of Escherichia coli O157:H7 in cattle, products, and the environment in the United States of America: a meta-analysis study. J Epidemiol Public Health Rev 6:1–11. https://doi.org/10.16966/2471-8211.216. (PMID: 10.16966/2471-8211.216)
Santos AS, Romeiro FG, Sassaki YL et al (2015) Escherichia coli from Crohn’s disease patient displays virulence features of enteroinvasive (EIEC), enterohemorragic (EHEC), and enteroaggregative (EAEC) pathotypes. Gut Pathogens 7:1–10. https://doi.org/10.1186/s13099-015-0050-8. (PMID: 10.1186/s13099-015-0050-8)
Santos ECC, Castro VS, Cunha-Neto A, Santos LFD et al (2018) Escherichia coli O26 and O113:H21 on carcasses and beef from a slaughterhouse located in Mato Grosso, Brazil. Foodborne Pathog Dis 15:653–659. https://doi.org/10.1089/fpd.2018.2431. (PMID: 10.1089/fpd.2018.243130036077)
Yang SC, Lin CH, Aljuffali IA, Fang JY (2017) Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol 199:811–825. https://doi.org/10.1007/s00203-017-1393-y. (PMID: 10.1007/s00203-017-1393-y28597303)
Wang Y, Salazar JK (2016) Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Safety 15:183–205. https://doi.org/10.1111/1541-4337.12175. (PMID: 10.1111/1541-4337.12175)
Smith DR (2014) Vaccination of cattle against Escherichia coli O157:H7. Microbiol Spectr 2:1–11. https://doi.org/10.1128/microbiolspec.ehec-0006-2013. (PMID: 10.1128/microbiolspec.ehec-0006-2013)
Williams KJ, Ward MP, Dhungyel OP et al (2014) A longitudinal study of the prevalence and super-shedding of Escherichia coli O157 in dairy heifers. Vet Microbiol 173:101–109. https://doi.org/10.1016/j.vetmic.2014.07.001. (PMID: 10.1016/j.vetmic.2014.07.00125064268)
Munns KD, Selinger LB, Stanford K et al (2015) Perspectives on super-shedding of Escherichia coli O157:H7 by cattle. Foodborne Pathog Dis 12:89–103. https://doi.org/10.1089/fpd.2014.1829. (PMID: 10.1089/fpd.2014.182925514549)
Arrais BR, Silveira AVBA, Oliveira AF et al (2021) Stx1 and Stx2 subtyping and antimicrobial resistance in Shiga toxin-producing Escherichia coli (STEC) isolates from cattle and sheep feces in the Southeastern region of the State of Goiás, Brazil. Pesq Vet Bras 41:1–7. (PMID: 10.1590/1678-5150-pvb-6747)
Bonardi S, Alpigiani I, Tozzoli R et al (2015) Shiga toxin-producing Escherichia coli O157, O26 and O111 in cattle faeces and hides in Italy. Vet Rec Open 20:1–9. https://doi.org/10.1136/vetreco-2014-000061. (PMID: 10.1136/vetreco-2014-000061)
Kalchayanand N, Worlie D, Wheeler T (2019) A novel aqueous ozone treatment as a spray chill intervention against Escherichia coli O157:H7 on surfaces of fresh beef. J Food Prot 82:1874–1878. https://doi.org/10.4315/0362-028x.jfp-19-093. (PMID: 10.4315/0362-028x.jfp-19-09331622163)
Krause M, Barth H, Schmidt H (2018) Toxins of locus of enterocyte effacement-negative shiga toxin-producing Escherichia coli. Toxins 10:1–19. https://doi.org/10.3390/toxins10060241. (PMID: 10.3390/toxins10060241)
Schaut RG, Loving CL, Sharma VK (2018) Escherichia coli O157:H7 virulence factors differentially impact cattle and bison macrophage killing capacity. Microb Pathog 118:251–256. https://doi.org/10.1016/j.micpath.2018.03.045. (PMID: 10.1016/j.micpath.2018.03.04529588211)
Gyles CL (2007) Shiga toxin-producing Escherichia coli: an overview. Anim Sci 85:E45–E62. https://doi.org/10.2527/jas.2006-508. (PMID: 10.2527/jas.2006-508)
Worrall LJ, Bergeron JRC, Strynadka NCJ (2013) Chapter 14: type 3 secretion systems. In: Donnenberg MS (ed) Escherichia coli. Academic Press, Boston, pp 417–450. (PMID: 10.1016/B978-0-12-397048-0.00014-0)
Scheutz F, Teel LD, Beutin L et al (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951–2963. https://doi.org/10.1128/jcm.00860-12. (PMID: 10.1128/jcm.00860-12227600503421821)
Karmali MA, Gannon V, Sargeant JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140:360–370. https://doi.org/10.1016/j.vetmic.2009.04.011. (PMID: 10.1016/j.vetmic.2009.04.01119410388)
Newton HJ, Sloan J, Bulach DM et al (2009) (2009) Shiga toxin–producing Escherichia coli strains negative for locus of enterocyte effacement. Emerg Infect Dis 15:372–380. https://doi.org/10.3201/eid1502.080631. (PMID: 10.3201/eid1502.080631192397482681110)
Karmali MA (2017) Emerging public health challenges of Shiga toxin–producing Escherichia coli related to changes in the pathogen, the population, and the environment. Clin Infect Dis 64:371–376. https://doi.org/10.1093/cid/ciw708. (PMID: 10.1093/cid/ciw70827986670)
Dean-Nystrom EA, Bosworth BT, Cray WC Jr, Moon HW (1997) Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infect Immun 65:1842–1848. https://doi.org/10.1128/iai.65.5.1842-1848.1997. (PMID: 10.1128/iai.65.5.1842-1848.19979125570175228)
Barth SA, Menge C, Eichhorn I et al (2016) The accessory genome of Shiga toxin-producing Escherichia coli defines a persistent colonization type in cattle. Appl Environ Microbiol 82:5455–5464. https://doi.org/10.1128/aem.00909-16. (PMID: 10.1128/aem.00909-16273715794988194)
Menge C (2020) The Role of Escherichia coli Shiga toxins in STEC colonization of cattle. Toxins 12:2–37. https://doi.org/10.3390/toxins12090607. (PMID: 10.3390/toxins12090607)
ISO (2017) ISO 16654:2001/AMD 1:2017 Microbiology of food and animal feeding stuffs — horizontal method for the detection of Escherichia coli O157 — Amendment 1: Annex B: Result of interlaboratory studies. https://www.iso.org/standard/29821.html . Accessed 21 Jan 2022.
Conrad CC, Stanford K, MCallister TA et al (2016) Competition during enrichment of pathogenic Escherichia coli may result in culture bias. Facets 1:114–126. https://doi.org/10.1139/facets-2016-0007. (PMID: 10.1139/facets-2016-0007)
Madic J (2010) Methods for detection of shiga-toxin producing Escherichia coli (STEC). In: Madic MV (ed) Detection of Bacteria, Viruses, Parasites and Fungi. Springer, Italy, pp 53–86. (PMID: 10.1007/978-90-481-8544-3_4)
Verhaegen B, van Damme I, Heyndrickx M et al (2016) Evaluation of detection methods for non-O157 Shiga toxin-producing Escherichia coli from food. Int J Food Microbiol 219:64–70. https://doi.org/10.1016/j.ijfoodmicro.2015.12.006. (PMID: 10.1016/j.ijfoodmicro.2015.12.00626736066)
Yeni F, Acar S, Polat ÖG, Soyer Y, Alpas H (2014) Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40:359–367. https://doi.org/10.1016/j.foodcont.2013.12.020. (PMID: 10.1016/j.foodcont.2013.12.020)
Gill A, Huszczynski G, Gauthier M et al (2014) Evaluation of eight agar media for the isolation of Shiga toxin-producing Escherichia coli. J Microbiol Methods 96:6–11. https://doi.org/10.1016/j.mimet.2013.10.022. (PMID: 10.1016/j.mimet.2013.10.02224211606)
Brasil (2018) INSTRUÇÃO NORMATIVA Nº 60, DE 20 DE DEZEMBRO DE 2018.  https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/56641896 . Accessed 21 Jan 2022.
فهرسة مساهمة: Keywords: Contaminated carcasses; Enterobacter; Foodborn diseases; Foodborn pathogen; Shiga-type toxins
المشرفين على المادة: 0 (Escherichia coli Proteins)
تواريخ الأحداث: Date Created: 20230619 Date Completed: 20230911 Latest Revision: 20240620
رمز التحديث: 20240620
مُعرف محوري في PubMed: PMC10484834
DOI: 10.1007/s42770-023-01034-x
PMID: 37335430
قاعدة البيانات: MEDLINE
الوصف
تدمد:1678-4405
DOI:10.1007/s42770-023-01034-x