دورية أكاديمية

A Database of Snow on Sea Ice in the Central Arctic Collected during the MOSAiC expedition.

التفاصيل البيبلوغرافية
العنوان: A Database of Snow on Sea Ice in the Central Arctic Collected during the MOSAiC expedition.
المؤلفون: Macfarlane AR; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland. amyrmacfarlane@gmail.com., Schneebeli M; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland. schneebeli@slf.ch., Dadic R; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland. ruzica.dadic@gmail.com.; Victoria University of Wellington, Wellington, New Zealand. ruzica.dadic@gmail.com., Tavri A; Department of Geography, University of Victoria, Victoria, BC, Canada. tavri.katia@gmail.com., Immerz A; Alfred-Wegener-Institut Helmholtz-Zenütrum fr Polar und Meeresforschung, Bremerhaven, Germany., Polashenski C; Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA., Krampe D; Alfred-Wegener-Institut Helmholtz-Zenütrum fr Polar und Meeresforschung, Bremerhaven, Germany., Clemens-Sewall D; Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA., Wagner DN; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland. david.wagner@slf.ch.; CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland. david.wagner@slf.ch., Perovich DK; Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA., Henna-Reetta H; Finnish Meteorological Institute, Helsinki, Finland., Raphael I; Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA., Matero I; Svalbard Integrated Arctic Earth Observing System, P.O. Box 156, 9171, Longyearbyen, Norway., Regnery J; Alfred-Wegener-Institut Helmholtz-Zenütrum fr Polar und Meeresforschung, Bremerhaven, Germany., Smith MM; Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA., Nicolaus M; Alfred-Wegener-Institut Helmholtz-Zenütrum fr Polar und Meeresforschung, Bremerhaven, Germany., Jaggi M; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland., Oggier M; International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, USA., Webster MA; International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, USA., Lehning M; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland.; CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland., Kolabutin N; Arctic and Antarctic Research Institute, AARI, Saint-Petersburg, Russia., Itkin P; UiT The Arctic University of Norway, Tromsø, Norway., Naderpour R; WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland., Pirazzini R; Finnish Meteorological Institute, Helsinki, Finland., Hämmerle S; SCANCO medical AG, Wangen-Brüttisellen, Switzerland., Arndt S; Alfred-Wegener-Institut Helmholtz-Zenütrum fr Polar und Meeresforschung, Bremerhaven, Germany., Fons S; Cryospheric Sciences Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.; Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA.
المصدر: Scientific data [Sci Data] 2023 Jun 22; Vol. 10 (1), pp. 398. Date of Electronic Publication: 2023 Jun 22.
نوع المنشور: Dataset; Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101640192 Publication Model: Electronic Cited Medium: Internet ISSN: 2052-4463 (Electronic) Linking ISSN: 20524463 NLM ISO Abbreviation: Sci Data Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, 2014-
مستخلص: Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system's energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition.
(© 2023. The Author(s).)
التعليقات: Erratum in: Sci Data. 2023 Jul 28;10(1):500. (PMID: 37507451)
References: Eicken, H., Fischer, H. & Lemke, P. Effects of the snow cover on Antarctic sea ice and potential modulation of its response to climate change. Annals of Glaciology 21, 369–376 (1995). (PMID: 10.3189/S0260305500016086)
Fichefet, T. & Maqueda, M. Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dynamics 15, 251–268 (1999). (PMID: 10.1007/s003820050280)
Massom, R. A. et al. Snow on Antarctic sea ice. Reviews of Geophysics 39, 413–445 (2001). (PMID: 10.1029/2000RG000085)
Lecomte, O., Fichefet, T., Flocco, D., Schroeder, D. & Vancoppenolle, M. Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean-sea ice model. Ocean Modelling 87, 67–80 (2015). (PMID: 10.1016/j.ocemod.2014.12.003)
Lecomte, O. et al. On the formulation of snow thermal conductivity in large-scale sea ice models. Journal of Advances in Modeling Earth Systems 5, 542–557 (2013). (PMID: 10.1002/jame.20039)
Sturm, M. & Massom, R. A. Snow in the sea ice system: Friend or foe. Sea ice 65–109 (2017).
Granskog, M. A. et al. Snow contribution to first-year and second-year Arctic sea ice mass balance north of svalbard. Journal of Geophysical Research: Oceans 122, 2539–2549 (2017). (PMID: 10.1002/2016JC012398)
Arndt, S. et al. Influence of snow depth and surface flooding on light transmission through Antarctic pack ice. Journal of Geophysical Research: Oceans 122, 2108–2119 (2017). (PMID: 10.1002/2016JC012325)
Petty, A. A., Webster, M., Boisvert, L. & Markus, T. The NASA eulerian snow on sea ice model (NESOSIM) v1. 0: initial model development and analysis. Geoscientific Model Development 11, 4577–4602 (2018). (PMID: 10.5194/gmd-11-4577-2018)
Webster, M. et al. Snow in the changing sea-ice systems. Nature Climate Change 8, 946–953 (2018). (PMID: 10.1038/s41558-018-0286-7)
Sturm, M., Holmgren, J. & Perovich, D. K. Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability. Journal of Geophysical Research: Oceans 107, SHE–23 (2002). (PMID: 10.1029/2000JC000400)
Merkouriadi, I., Cheng, B., Hudson, S. R. & Granskog, M. A. Effect of frequent winter warming events (storms) and snow on sea-ice growth–a case from the Atlantic sector of the Arctic Ocean during the N-ICE2015 campaign. Annals of Glaciology 61, 164–170 (2020). (PMID: 10.1017/aog.2020.25)
Sankelo, P., Haapala, J., Heiler, I. & Rinne, E. Melt pond formation and temporal evolution at the drifting station tara during summer 2007. Polar Research 29, 311–321 (2010). (PMID: 10.1111/j.1751-8369.2010.00161.x)
Radionov, V. F., Bryazgin, N. N. & Alexandrov, E. I. The snow cover of the Arctic basin. Tech. Rep., WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB (1997).
Nandan, V. et al. Effect of snow salinity on cryosat-2 arctic first-year sea ice freeboard measurements. Geophysical Research Letters 44, 10–419 (2017). (PMID: 10.1002/2017GL074506)
Maksym, T. Arctic and Antarctic sea ice change: contrasts, commonalities, and causes. Annual Review of Marine Science 11, 187–213 (2019). (PMID: 10.1146/annurev-marine-010816-06061030216739)
Meredith, M. et al. Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC, Polar Regions (2019).
Arrigo, K. R. Sea ice as a habitat for primary producers. Sea ice 352–369 (2017).
Light, B., Grenfell, T. C. & Perovich, D. K. Transmission and absorption of solar radiation by Arctic sea ice during the melt season. Journal of Geophysical Research: Oceans 113 (2008).
Nicolaus, M. et al. Overview of the MOSAiC expedition: Snow and sea ice (2022).
Manninen, T. et al. Effect of small-scale snow surface roughness on snow albedo and reflectance. The Cryosphere 15, 793–820 (2021). (PMID: 10.5194/tc-15-793-2021)
Irvine-Fynn, T. D., Sanz-Ablanedo, E., Rutter, N., Smith, M. W. & Chandler, J. H. Measuring glacier surface roughness using plot-scale, close-range digital photogrammetry. Journal of Glaciology 60, 957–969 (2014). (PMID: 10.3189/2014JoG14J032)
Proksch, M., Löwe, H. & Schneebeli, M. Density, specific surface area, and correlation length of snow measured by high-resolution penetrometry. Journal of Geophysical Research: Earth Surface 120, 346–362 (2015). (PMID: 10.1002/2014JF003266)
Schneebeli, M., Pielmeier, C. & Johnson, J. B. Measuring snow microstructure and hardness using a high resolution penetrometer. Cold Regions Science and Technology 30, 101–114 (1999). (PMID: 10.1016/S0165-232X(99)00030-0)
King, J. et al. Local-scale variability of snow density on arctic sea ice. The Cryosphere 14, 4323–4339 (2020). (PMID: 10.5194/tc-14-4323-2020)
Kaltenborn, J., Clay, V., Macfarlane, A. R. & Schneebeli, M. Machine learning for snow stratigraphy classification. In NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning (2021).
Conger, S. M. & Mcclung, D. M. Comparison of density cutters for snow profile observations. Journal of Glaciology 55, 163–169 (2009). (PMID: 10.3189/002214309788609038)
Stevens. Stevens ® Water Monitoring System, Inc. The Hydra Probe ® Soil Sensor Comprehensive Stevens Hydra Probe Users Manual (2015).
Geldsetzer, T., Langlois, A. & Yackel, J. Dielectric properties of brine-wetted snow on first-year sea ice. Cold Regions Science and Technology 58, 47–56 (2009). (PMID: 10.1016/j.coldregions.2009.03.009)
Backstrom, L. G. & Eicken, H. Capacitance probe measurements of brine volume and bulk salinity in first-year sea ice. Cold regions science and technology 46, 167–180 (2006). (PMID: 10.1016/j.coldregions.2006.08.018)
Scharien, R. K., Geldsetzer, T., Barber, D. G., Yackel, J. J. & Langlois, A. Physical, dielectric, and C band microwave scattering properties of first-year sea ice during advanced melt. Journal of Geophysical Research: Oceans 115 (2010).
Survey3N Camera - Near Infrared (NIR) - MAPIR CAMERA. https://www.mapir.camera/products/survey3n-camera-near-infrared-nir .
Matzl, M. & Schneebeli, M. Measuring specific surface area of snow by near-infrared photography. Journal of Glaciology 52, 558–564 (2006). (PMID: 10.3189/172756506781828412)
Scanco Medical AG. µCT 90 desktop microCT scanner. https://www.scanco.ch/microct90.html (2022).
YSI incorporated. Ysi model 30 ysi model 30m handheld salinity, conductivity and temperature system operations manual. https://www.ysi.com/File%20Library/Documents/Manuals%20for%20Discontinued%20Products/030136-YSI-Model-30-Operations-Manual-RevE.pdf (2007).
Itkin, P. et al. Magnaprobe snow and melt pond depth measurements from the 2019-2020 MOSAiC expedition. PANGAEA  https://doi.org/10.1594/PANGAEA.937781 (2021).
Nicolaus, M. et al. Drift trajectories of the main sites of the Distributed Network of MOSAiC 2019/2020 PANGAEA  https://doi.org/10.1594/PANGAEA.937204 (2021).
Macfarlane, A. R. et al. Snowpit raw data collected during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.935934 (2021).
Macfarlane, A. R. et al. Snowpit metadata TXT files collected during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940106 (2022).
Macfarlane, A. R. et al. Snowpit SnowMicroPen (SMP) force profiles collected during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.935554 (2021).
Macfarlane, A. R. et al. Snowpit near-infrared (NIR) images collected during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940129 (2022).
Macfarlane, A. R. et al. Snowpit surface type observed during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940198 (2022).
Macfarlane, A. R. et al. Snowpit snow water equivalent collected with an ETH tube during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940199 (2022).
Macfarlane, A. R. et al. Snowpit temperature profiles measured during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940200 (2022).
Macfarlane, A. R. et al. Snowpit overview photos collected during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940056 (2022).
Macfarlane, A. R. et al. Snowpit multi-image photogrammetry images collected during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.935932 (2021).
Macfarlane, A. R. et al. Snow permittivity measured during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940757 (2022).
Macfarlane, A. R. et al. Snowpit snow density cutter profiles measured during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940214 (2022).
Macfarlane, A. R. et al. Snowpit height measurements during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.940215 (2022).
Macfarlane, A. R. et al. Snowpit GPS locations during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.935933 (2021).
Macfarlane, A. R. et al. Snowpit salinity profiles during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.946807 (2022).
Macfarlane, A. R. et al. Snowpit stable isotope profiles during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.952556 (2022).
Macfarlane, A. R. et al. MicroCT density and specific surface area snowpit profiles during the MOSAiC expedition. PANGAEA https://doi.org/10.1594/PANGAEA.952794 (2022).
Calonne, N. et al. The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack. The Cryosphere 14, 1829–1848 (2020). (PMID: 10.5194/tc-14-1829-2020)
Löwe, H., Riche, F. & Schneebeli, M. A general treatment of snow microstructure exemplified by an improved relation for thermal conductivity. The Cryosphere 7, 1473–1480 (2013). (PMID: 10.5194/tc-7-1473-2013)
Knust, R. Polar research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute. Journal of large-scale research facilities JLSRF 3, A119–A119 (2017). (PMID: 10.17815/jlsrf-3-163)
Nixdorf, U. et al. MOSAiC extended acknowledgement. Zenodo (2021).
معلومات مُعتمدة: 730965 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); 2138786 National Science Foundation (NSF)
تواريخ الأحداث: Date Created: 20230622 Date Completed: 20230626 Latest Revision: 20230728
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10287691
DOI: 10.1038/s41597-023-02273-1
PMID: 37349340
قاعدة البيانات: MEDLINE
الوصف
تدمد:2052-4463
DOI:10.1038/s41597-023-02273-1