دورية أكاديمية

Rapid and stain-free quantification of viral plaque via lens-free holography and deep learning.

التفاصيل البيبلوغرافية
العنوان: Rapid and stain-free quantification of viral plaque via lens-free holography and deep learning.
المؤلفون: Liu T; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Bioengineering Department, University of California, Los Angeles, USA.; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA., Li Y; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Bioengineering Department, University of California, Los Angeles, USA.; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA., Koydemir HC; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.; Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA., Zhang Y; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Bioengineering Department, University of California, Los Angeles, USA.; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA., Yang E; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Department of Mathematics, University of California, Los Angeles, CA, USA., Eryilmaz M; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Bioengineering Department, University of California, Los Angeles, USA., Wang H; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Bioengineering Department, University of California, Los Angeles, USA.; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA., Li J; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Bioengineering Department, University of California, Los Angeles, USA.; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA., Bai B; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; Bioengineering Department, University of California, Los Angeles, USA.; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA., Ma G; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.; School of Physics, Xi'an Jiaotong University, Xi'an, China., Ozcan A; Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA. ozcan@ucla.edu.; Bioengineering Department, University of California, Los Angeles, USA. ozcan@ucla.edu.; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA. ozcan@ucla.edu.; Department of Surgery, University of California, Los Angeles, CA, USA. ozcan@ucla.edu.
المصدر: Nature biomedical engineering [Nat Biomed Eng] 2023 Aug; Vol. 7 (8), pp. 1040-1052. Date of Electronic Publication: 2023 Jun 22.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101696896 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2157-846X (Electronic) Linking ISSN: 2157846X NLM ISO Abbreviation: Nat Biomed Eng Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Springer Nature
Original Publication: [London] : Macmillan Publishers Limited, [2016]-
مواضيع طبية MeSH: Deep Learning* , Holography*, Viral Plaque Assay ; Coloring Agents ; Virus Replication
مستخلص: A plaque assay-the gold-standard method for measuring the concentration of replication-competent lytic virions-requires staining and usually more than 48 h of runtime. Here we show that lens-free holographic imaging and deep learning can be combined to expedite and automate the assay. The compact imaging device captures phase information label-free at a rate of approximately 0.32 gigapixels per hour per well, covers an area of about 30 × 30 mm 2 and a 10-fold larger dynamic range of virus concentration than standard assays, and quantifies the infected area and the number of plaque-forming units. For the vesicular stomatitis virus, the automated plaque assay detected the first cell-lysing events caused by viral replication as early as 5 h after incubation, and in less than 20 h it detected plaque-forming units at rates higher than 90% at 100% specificity. Furthermore, it reduced the incubation time of the herpes simplex virus type 1 by about 48 h and that of the encephalomyocarditis virus by about 20 h. The stain-free assay should be amenable for use in virology research, vaccine development and clinical diagnosis.
(© 2023. The Author(s).)
References: Singh, L., Kruger, H. G., Maguire, G. E. M., Govender, T. & Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 4, 105–131 (2017). (PMID: 287480895507392)
CDC. Burden of influenza. Centers for Disease Control and Prevention https://www.cdc.gov/flu/about/burden/index.html (2022).
CDC. Preliminary in-season 2021–2022 flu burden estimates. Centers for Disease Control and Prevention https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm (2022).
COVID-19 map. Johns Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/map.html (2020).
Ryu, W.-S. Diagnosis and methods. in Molecular Virology of Human Pathogenic Viruses 47–62 (Academic Press, 2017); https://doi.org/10.1016/B978-0-12-800838-6.00004-7.
Wen, Z. et al. Development and application of a higher throughput RSV plaque assay by immunofluorescent imaging. J. Virol. Methods 263, 88–95 (2019). (PMID: 3038123910.1016/j.jviromet.2018.10.022)
Basak, S., Kang, H.-J., Chu, K.-B., Oh, J. & Quan, F.-S. Simple and rapid plaque assay for recombinant baculoviruses expressing influenza hemagglutinin. Sci. Prog. 104, 00368504211004261 (2021). (PMID: 10.1177/00368504211004261)
Abou-Karam, M. & Shier, W. T. A simplified plaque reduction assay for antiviral agents from plants. Demonstration of frequent occurrence of antiviral activity in higher plants. J. Nat. Prod. 53, 340–344 (1990). (PMID: 216613510.1021/np50068a011)
Stepp, P. C., Ranno, K. A. & Ferris, M. M. New method for rapid virus quantification. GEN—Genetic Engineering and Biotechnology News https://www.genengnews.com/resources/new-method-for-rapid-virus-quantification/ (2010).
Ryu, W.-S. Molecular Virology of Human Pathogenic Viruses (Academic Press, 2017).
Mendoza, E. J., Manguiat, K., Wood, H. & Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Curr. Protoc. Microbiol. 57, cpmc105 (2020). (PMID: 32475066730043210.1002/cpmc.105)
Rashid, K. A., Hevi, S., Chen, Y., Cahérec, F. L. & Chuck, S. L. A proteomic approach identifies proteins in hepatocytes that bind nascent apolipoprotein B *. J. Biol. Chem. 277, 22010–22017 (2002). (PMID: 1193488610.1074/jbc.M112448200)
Blaho, J. A., Morton, E. R. & Yedowitz, J. C. Herpes simplex virus: propagation, quantification, and storage. Curr. Protoc. Microbiol. 14, E.1.1–E.1.23 (2006).
Cruz, D. J. M. & Shin, H.-J. Application of a focus formation assay for detection and titration of porcine epidemic diarrhea virus. J. Virol. Methods 145, 56–61 (2007). (PMID: 17576016711977510.1016/j.jviromet.2007.05.012)
Loret, S., El Bilali, N. & Lippé, R. Analysis of herpes simplex virus type I nuclear particles by flow cytometry. Cytom. Part A 81A, 950–959 (2012). (PMID: 10.1002/cyto.a.22107)
Gallaher, S. D. & Berk, A. J. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results. J. Virol. Methods 192, 28–38 (2013). (PMID: 23624118367935210.1016/j.jviromet.2013.04.013)
Killian, M. L. in Animal Influenza Virus (ed Spackman, E.) 3–9 (Springer, 2014); https://doi.org/10.1007/978-1-4939-0758-8_1.
Roingeard, P., Raynal, P., Eymieux, S. & Blanchard, E. Virus detection by transmission electron microscopy: still useful for diagnosis and a plus for biosafety. Rev. Med Virol. 29, e2019 (2019). (PMID: 3041183210.1002/rmv.2019)
Alhajj, M. & Farhana, A. Enzyme Linked Immunosorbent Assay (StatPearls, 2022).
Pankaj, K. Virus identification and quantification. Materials and Methods https://www.labome.com/method/Virus-Identification-and-Quantification.html (2021).
Baer, A. & Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J. Vis. Exp. https://doi.org/10.3791/52065 (2014). (PMID: 10.3791/52065254074024255882)
Masci, A. L. et al. Integration of fluorescence detection and image-based automated counting increases speed, sensitivity, and robustness of plaque assays. Mol. Ther. Methods Clin. Dev. 14, 270–274 (2019). (PMID: 31489337671706410.1016/j.omtm.2019.07.007)
Ke, N., Wang, X., Xu, X. & Abassi, Y. A. in Mammalian Cell Viability: Methods and Protocols (ed Stoddart, M. J.) 33–43 (Humana, 2011); https://doi.org/10.1007/978-1-61779-108-6_6.
Burmakina, G., Bliznetsov, K. & Malogolovkin, A. Real-time analysis of the cytopathic effect of African swine fever virus. J. Virol. Methods 257, 58–61 (2018). (PMID: 2962733610.1016/j.jviromet.2018.04.003)
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon. 12, 578–589 (2018). (PMID: 10.1038/s41566-018-0253-x)
Cacace, T., Bianco, V. & Ferraro, P. Quantitative phase imaging trends in biomedical applications. Opt. Lasers Eng. 135, 106188 (2020). (PMID: 10.1016/j.optlaseng.2020.106188)
Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, 17141–17141 (2018). (PMID: 30839514606006810.1038/lsa.2017.141)
Choi, G. et al. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Opt. Express 27, 4927–4943 (2019). (PMID: 3087610210.1364/OE.27.004927)
Luo, Y., Huang, L., Rivenson, Y. & Ozcan, A. Single-shot autofocusing of microscopy images using deep learning. ACS Photonics 8, 625–638 (2021). (PMID: 10.1021/acsphotonics.0c01774)
Ding, H. et al. Auto-focusing and quantitative phase imaging using deep learning for the incoherent illumination microscopy system. Opt. Express 29, 26385–26403 (2021). (PMID: 3461507510.1364/OE.434014)
Liu, T. et al. Deep learning-based super-resolution in coherent imaging systems. Sci. Rep. 9, 3926 (2019). (PMID: 30850721640856910.1038/s41598-019-40554-1)
Wang, H. et al. Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning. Light Sci. Appl. 9, 118 (2020). (PMID: 32685139735177510.1038/s41377-020-00358-9)
Kim, G. et al. Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network. Light Sci. Appl. 11, 190 (2022). (PMID: 35739098922635610.1038/s41377-022-00881-x)
Işıl, Ç. et al. Phenotypic analysis of microalgae populations using label-free imaging flow cytometry and deep learning. ACS Photonics 8, 1232–1242 (2021). (PMID: 10.1021/acsphotonics.1c00220)
Butola, A. et al. High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition. Sci. Rep. 10, 13118 (2020). (PMID: 32753627740341210.1038/s41598-020-69857-4)
Kim, G., Jo, Y., Cho, H., Min, H. & Park, Y. Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosens. Bioelectron. 123, 69–76 (2019). (PMID: 3032175810.1016/j.bios.2018.09.068)
Shu, X. et al. Artificial-intelligence-enabled reagent-free imaging hematology analyzer. Adv. Intell. Syst. 3, 2000277 (2021). (PMID: 10.1002/aisy.202000277)
Javidi, B. et al. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. Opt. Express 26, 13614–13627 (2018). (PMID: 2980138410.1364/OE.26.013614)
O’Connor, T., Anand, A., Andemariam, B. & Javidi, B. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. Biomed. Opt. Express 11, 4491–4508 (2020). (PMID: 32923059744970910.1364/BOE.399020)
Goswami, N. et al. Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity. Light Sci. Appl. 10, 176 (2021). (PMID: 34465726840803910.1038/s41377-021-00620-8)
O’Connor, T., Shen, J.-B., Liang, B. T. & Javidi, B. Digital holographic deep learning of red blood cells for field-portable, rapid COVID-19 screening. Opt. Lett. 46, 2344–2347 (2021). (PMID: 3398857910.1364/OL.426152)
Li, Y. et al. Deep learning-enabled detection and classification of bacterial colonies using a thin-film transistor (TFT) image sensor. ACS Photonics 9, 2455–2466 (2022). (PMID: 10.1021/acsphotonics.2c00572)
Lin, L.-C., Kuo, Y.-C. & Chou, C.-J. Anti-herpes simplex virus type-1 flavonoids and a new flavanone from the root of Limonium sinense. Planta Med. 66, 333–336 (2000). (PMID: 1086544910.1055/s-2000-8540)
Kirsi, J. J. et al. Broad-spectrum antiviral activity of 2-beta-D-ribofuranosylselenazole-4-carboxamide, a new antiviral agent. Antimicrob. Agents Chemother. 24, 353–361 (1983). (PMID: 661561118532510.1128/AAC.24.3.353)
Baker, D. A. & Glasgow, L. A. Rapid plaque assay for encephalomyocarditis virus. Appl. Microbiol. 18, 932–934 (1969). (PMID: 431317237811610.1128/am.18.5.932-934.1969)
Zhang, Y. et al. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. Light Sci. Appl. 7, 108 (2018). (PMID: 30564314629079810.1038/s41377-018-0110-1)
Luo, W., Zhang, Y., Feizi, A., Göröcs, Z. & Ozcan, A. Pixel super-resolution using wavelength scanning. Light Sci. Appl. 5, e16060–e16060 (2016). (PMID: 30167157605995310.1038/lsa.2016.60)
Abdelmageed, A. A. & Ferran, M. C. The propagation, quantification, and storage of vesicular stomatitis virus. Curr. Protoc. Microbiol. 58, e110 (2020). (PMID: 32833351744958810.1002/cpmc.110)
Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010). (PMID: 20401422290272810.1039/c000453g)
Bishara, W., Zhu, H. & Ozcan, A. Holographic opto-fluidic microscopy. Opt. Express 18, 27499–27510 (2010). (PMID: 21197025305788510.1364/OE.18.027499)
Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889–895 (2012). (PMID: 22936170347758910.1038/nmeth.2114)
Tseng, D. et al. Lensfree microscopy on a cellphone. Lab Chip 10, 1787–1792 (2010). (PMID: 20445943294143810.1039/c003477k)
Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6, 267ra175 (2014). (PMID: 2552039610.1126/scitranslmed.3009850)
Göröcs, Z. & Ozcan, A. On-chip biomedical imaging. IEEE Rev. Biomed. Eng. 6, 29–46 (2013). (PMID: 23558399362102110.1109/RBME.2012.2215847)
Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4–16 (2018). (PMID: 2886435610.1016/j.ymeth.2017.08.013)
Zhang, Y., Wang, H., Wu, Y., Tamamitsu, M. & Ozcan, A. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett. 42, 3824–3827 (2017). (PMID: 2895713910.1364/OL.42.003824)
Estimate displacement field that aligns two 2-D or 3-D images—MATLAB imregdemons. MathWorks https://www.mathworks.com/help/images/ref/imregdemons.html (2014).
Reitberger, G. & Sauer, T. Background subtraction using adaptive singular value decomposition. J. Math. Imaging Vis. 62, 1159–1172 (2020). (PMID: 10.1007/s10851-020-00967-4)
Huang, G., Liu, Z., Pleiss, G., van der Maaten, L. & Weinberger, K. Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2019.2918284 (2019).
Qiu, Z., Yao, T. & Mei, T. Learning spatio-temporal representation with pseudo-3D residual networks. Proc. IEEE Int. Conf. Comput. Vis. https://doi.org/10.1109/ICCV.2017.590 (2017). (PMID: 10.1109/ICCV.2017.590)
المشرفين على المادة: 0 (Coloring Agents)
تواريخ الأحداث: Date Created: 20230622 Date Completed: 20230817 Latest Revision: 20230820
رمز التحديث: 20230821
مُعرف محوري في PubMed: PMC10427422
DOI: 10.1038/s41551-023-01057-7
PMID: 37349390
قاعدة البيانات: MEDLINE
الوصف
تدمد:2157-846X
DOI:10.1038/s41551-023-01057-7