دورية أكاديمية

Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia.

التفاصيل البيبلوغرافية
العنوان: Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia.
المؤلفون: Ortiz V; Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States.; Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States., Chang HX; Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan., Sang H; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea., Jacobs J; Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States., Malvick DK; Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States., Baird R; BCH-EPP Department, Mississippi State University, Mississippi State, MS, United States., Mathew FM; Department of Plant Pathology, North Dakota State University, Fargo, ND, United States., Estévez de Jensen C; Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, PR, United States., Wise KA; Department of Plant Pathology, College of Agriculture, Food and Environment, University of Kentucky, Princeton, KY, United States., Mosquera GM; Plant Pathology, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Palmira, Colombia., Chilvers MI; Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States.; Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States.
المصدر: Frontiers in genetics [Front Genet] 2023 Jun 07; Vol. 14, pp. 1103969. Date of Electronic Publication: 2023 Jun 07 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101560621 Publication Model: eCollection Cited Medium: Print ISSN: 1664-8021 (Print) Linking ISSN: 16648021 NLM ISO Abbreviation: Front Genet Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation.
مستخلص: Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited . This study conducted genome sequencing for 95  M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina . On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Ortiz, Chang, Sang, Jacobs, Malvick, Baird, Mathew, Estévez de Jensen, Wise, Mosquera and Chilvers.)
References: Plant Dis. 2005 May;89(5):526. (PMID: 30795434)
Plant Dis. 1997 Jan;81(1):107-110. (PMID: 30870925)
Phytopathology. 2001 Feb;91(2):120-6. (PMID: 18944384)
Mol Ecol Resour. 2016 Mar;16(2):540-8. (PMID: 26417651)
Bioinformatics. 2019 Nov 1;35(21):4453-4455. (PMID: 31070718)
Mol Ecol. 2012 Nov;21(22):5512-29. (PMID: 22857709)
Plant Dis. 2022 Jan;106(1):15-25. (PMID: 34649461)
Science. 2015 Aug 21;349(6250):832-6. (PMID: 26293956)
Mol Ecol. 2018 Dec;27(24):5035-5048. (PMID: 30427103)
Gene. 2016 Jan 10;575(2 Pt 3):675-9. (PMID: 26403724)
Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321-3. (PMID: 4519626)
Mol Ecol. 2015 Jun;24(11):2747-58. (PMID: 25728665)
Genetics. 1978 Jul;89(3):583-90. (PMID: 17248844)
Mol Biol Evol. 2022 May 3;39(5):. (PMID: 35588244)
Fungal Biol. 2017 Apr;121(4):305-306. (PMID: 28317536)
Plant Dis. 2003 May;87(5):601. (PMID: 30812975)
Ecol Lett. 2015 Jan;18(1):1-16. (PMID: 25270536)
Nature. 2017 Jul 6;547(7661):118-122. (PMID: 28658211)
Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
Phytopathology. 2016 Sep;106(9):1038-46. (PMID: 27050569)
Phytopathology. 2017 Mar;107(3):293-304. (PMID: 27841963)
Mol Plant Microbe Interact. 2018 Aug;31(8):779-788. (PMID: 29664319)
Plant Dis. 2018 Sep 4;:PDIS04180558PDN. (PMID: 30192175)
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8791-6. (PMID: 24889615)
Bioinformatics. 2007 Oct 1;23(19):2633-5. (PMID: 17586829)
Plant Dis. 2018 Sep 6;:PDIS03180480PDN. (PMID: 30192181)
FEMS Microbiol Rev. 2007 Apr;31(3):327-41. (PMID: 17298585)
PeerJ. 2014 Mar 04;2:e281. (PMID: 24688859)
Mol Ecol. 2018 May;27(9):2215-2233. (PMID: 29633402)
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709):. (PMID: 28080995)
Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):770-3. (PMID: 8570632)
Nat Commun. 2018 Aug 14;9(1):3258. (PMID: 30108219)
Mol Ecol. 2017 Apr;26(7):2063-2076. (PMID: 27761941)
Genetics. 2018 Sep;210(1):33-52. (PMID: 30026187)
Nat Commun. 2021 Dec 10;12(1):7227. (PMID: 34893598)
Mycol Res. 2005 Jan;109(Pt 1):81-6. (PMID: 15736865)
Stud Mycol. 2013 Sep 30;76(1):31-49. (PMID: 24302789)
Sci Adv. 2015 Jul 03;1(6):e1400218. (PMID: 26601206)
Evolution. 2014 Jan;68(1):1-15. (PMID: 24111567)
Nat Rev Genet. 2013 Nov;14(11):807-20. (PMID: 24136507)
Annu Rev Phytopathol. 1996;34:457-77. (PMID: 15012552)
Nat Commun. 2019 Sep 13;10(1):4180. (PMID: 31519888)
Front Genet. 2012 Mar 15;3:35. (PMID: 22435069)
Bioinformatics. 2011 Nov 1;27(21):3070-1. (PMID: 21926124)
Mol Ecol. 2017 Apr;26(7):2027-2040. (PMID: 27696587)
Am Nat. 2016 Oct;188(4):379-97. (PMID: 27622873)
Fungal Biol. 2016 May;120(5):783-90. (PMID: 27109374)
Plant Dis. 2012 Feb;96(2):265-272. (PMID: 30731801)
Mol Ecol. 2014 Feb;23(4):753-73. (PMID: 24341913)
Plant Dis. 2003 May;87(5):563-566. (PMID: 30812959)
Mol Plant Microbe Interact. 2020 Feb;33(2):189-199. (PMID: 31593527)
BMC Genomics. 2019 Nov 4;20(1):802. (PMID: 31684862)
Fly (Austin). 2012 Apr-Jun;6(2):80-92. (PMID: 22728672)
Plant Dis. 2000 Aug;84(8):895-900. (PMID: 30832145)
PLoS One. 2014 Sep 02;9(9):e106740. (PMID: 25181515)
Microbiol Spectr. 2021 Sep 3;9(1):e0028721. (PMID: 34406871)
Annu Rev Phytopathol. 2002;40:349-79. (PMID: 12147764)
Plant Dis. 2013 Nov;97(11):1506. (PMID: 30708496)
Mycopathologia. 2010 Sep;170(3):169-80. (PMID: 20352493)
Front Plant Sci. 2017 May 08;8:722. (PMID: 28533789)
Bioinformatics. 2008 Jun 1;24(11):1403-5. (PMID: 18397895)
Nat Ecol Evol. 2019 Mar;3(3):430-439. (PMID: 30718852)
Mol Ecol. 2010 Jan;19(1):79-91. (PMID: 19943894)
Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384-8. (PMID: 8506277)
Front Genet. 2015 Jun 10;6:208. (PMID: 26113860)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2831-6. (PMID: 21282627)
Plant Dis. 2003 Feb;87(2):202. (PMID: 30812936)
Genetics. 1980 Oct;96(2):523-36. (PMID: 17249067)
Yeast. 2007 Nov;24(11):961-76. (PMID: 17605132)
BMC Genomics. 2012 Sep 19;13:493. (PMID: 22992219)
Genome Res. 2011 Dec;21(12):2157-66. (PMID: 21994252)
Phytopathology. 2021 Jan;111(1):184-193. (PMID: 33048629)
Plant Dis. 2011 Sep;95(9):1159-1166. (PMID: 30732064)
Phytopathology. 2003 Jun;93(6):738-46. (PMID: 18943061)
Mol Ecol. 2020 Jun;29(12):2204-2217. (PMID: 32419208)
Mol Ecol Resour. 2017 Jan;17(1):44-53. (PMID: 27401132)
Plant Dis. 1997 Apr;81(4):363-368. (PMID: 30861816)
Phytopathology. 2006 Oct;96(10):1134-41. (PMID: 18943502)
Genetics. 2001 Mar;157(3):1169-77. (PMID: 11238402)
فهرسة مساهمة: Keywords: charcoal rot; climate change; genotype–environment associations; landscape genetics; pathogen adaptation; phylogenomics; redundancy analysis
تواريخ الأحداث: Date Created: 20230623 Latest Revision: 20230701
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10282554
DOI: 10.3389/fgene.2023.1103969
PMID: 37351341
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-8021
DOI:10.3389/fgene.2023.1103969