دورية أكاديمية

In vivo magnetic resonance spectroscopy for the differential diagnosis of a cerebral mass in a boy with precocious puberty: a case report and review of the literature.

التفاصيل البيبلوغرافية
العنوان: In vivo magnetic resonance spectroscopy for the differential diagnosis of a cerebral mass in a boy with precocious puberty: a case report and review of the literature.
المؤلفون: Kosteria I; Department of Endocrinology, Growth & Development, 'P&A Kyriakou' Children's Hospital, Athens, Greece. ikosteria@med.uoa.gr., Gavra MM; Department of Paediatric Radiology (CT, MRI) & Nuclear Medicine, Aghia Sophia Children's Hospital, Athens, Greece., Verganelakis DA; Nuclear Medicine Unit, Oncology Clinic 'Marianna V. Vardinoyiannis-ELPIDA', Aghia Sophia Children's Hospital, Athens, Greece., Dikaiakou E; Department of Endocrinology, Growth & Development, 'P&A Kyriakou' Children's Hospital, Athens, Greece., Vartzelis G; Second Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, 'P&A Kyriakou' Children's Hospital, Athens, Greece., Vlachopapadopoulou EA; Department of Endocrinology, Growth & Development, 'P&A Kyriakou' Children's Hospital, Athens, Greece.
المصدر: Hormones (Athens, Greece) [Hormones (Athens)] 2023 Sep; Vol. 22 (3), pp. 507-513. Date of Electronic Publication: 2023 Jun 26.
نوع المنشور: Case Reports; Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101142469 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2520-8721 (Electronic) Linking ISSN: 11093099 NLM ISO Abbreviation: Hormones (Athens) Subsets: MEDLINE
أسماء مطبوعة: Publication: <2018-> : [Cham] : Springer International Publishing
Original Publication: Athens, Greece : Hellenic Endocrine Society, [2002]-
مواضيع طبية MeSH: Hamartoma*/complications , Hamartoma*/diagnosis , Hypothalamic Diseases*/diagnosis , Puberty, Precocious*/diagnosis , Puberty, Precocious*/etiology, Child, Preschool ; Humans ; Male ; Diagnosis, Differential ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; Seizures/complications ; Seizures/diagnosis
مستخلص: Purpose: To highlight the role of in vivo magnetic resonance spectroscopy (MRS) as a non-invasive tool that can clarify the etiology of sellar tumors by presenting the case of a boy with central precocious puberty (CPP) and to review the current literature.
Methods: A 4-year-old boy was admitted to our hospital due to repeated episodes of focal and gelastic seizures in the previous year. Clinical examination (testicular volume 4-5 ml bilaterally, penile length of 7.5 cm, and absence of axillary or pubic hair) and laboratory tests (FSH, LH, and testosterone) were indicative of CPP. The combination of gelastic seizures with CPP in a 4-year-old boy raised the suspicion of hypothalamic hamartoma (HH). Brain MRI revealed a lobular mass in the suprasellar-hypothalamic region. The differential diagnosis included glioma, HH, and craniopharyngioma. To further investigate the CNS mass, an in vivo brain MRS was performed.
Results: Οn conventional MRI, the mass demonstrated isointensity to gray matter on T1 weighted images but slight hyperintensity on T2-weighted images. It did not show restricted diffusion or contrast enhancement. On MRS, it showed reduced N-acetyl aspartate (NAA) and slightly elevated myoinositol (MI) compared with values in normal deep gray matter. The MRS spectrum, in combination with the conventional MRI findings, were consistent with the diagnosis of a HH.
Conclusion: MRS is a state-of-the-art, non-invasive imaging technique that compares the chemical composition of normal tissue to that of abnormal regions by juxtaposing the frequency of measured metabolites. MRS, in combination with clinical evaluation and classic MRI, can provide identification of CNS masses, thus eliminating the need for an invasive biopsy.
(© 2023. The Author(s), under exclusive licence to Hellenic Endocrine Society.)
References: Maione L, Bouvattier C, Kaiser UB (2021) Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clin Endocrinol (Oxf) 1–14. https://doi.org/10.1111/cen.14475.
Alomari SO, El Houshiemy MNE, Bsat S et al (2020) Hypothalamic hamartomas: A comprehensive review of the literature - Part 1: Neurobiological features, clinical presentations and advancements in diagnostic tools. Clin Neurol Neurosurg 197:106076. https://doi.org/10.1016/j.clineuro.2020.106076. (PMID: 10.1016/j.clineuro.2020.10607632717559)
Harrison VS, Oatman O, Kerrigan JF (2017) Hypothalamic hamartoma with epilepsy: Review of endocrine comorbidity. Epilepsia 58(Suppl 2):50–59. https://doi.org/10.1111/epi.13756. (PMID: 10.1111/epi.13756285914795533614)
Helen Cross J, Spoudeas H (2017) Medical management and antiepileptic drugs in hypothalamic hamartoma. Epilepsia 58(Suppl 2):16–21. https://doi.org/10.1111/epi.13758. (PMID: 10.1111/epi.1375828591485)
Cheuiche AV, da Silveira LG, de Paula LCP et al (2021) Diagnosis and management of precocious sexual maturation: an updated review. Eur J Pediatr 180:3073–3087. https://doi.org/10.1007/s00431-021-04022-1. (PMID: 10.1007/s00431-021-04022-133745030)
Ramos CO, Latronico AC, Cukier P et al (2018) Long-Term Outcomes of Patients with Central Precocious Puberty due to Hypothalamic Hamartoma after GnRHa Treatment: Anthropometric, Metabolic, and Reproductive Aspects. Neuroendocrinology 106:203–210. https://doi.org/10.1159/000477584. (PMID: 10.1159/00047758428558376)
Nguyen D, Singh S, Zaatreh M et al (2003) Hypothalamic hamartomas: Seven cases and review of the literature. Epilepsy Behav 4:246–258. https://doi.org/10.1016/S1525-5050(03)00086-6. (PMID: 10.1016/S1525-5050(03)00086-612791326)
Suh J, Choi Y, Oh JS et al (2021) Management of Central Precocious Puberty in Children with Hypothalamic Hamartoma. Children 8:711. https://doi.org/10.3390/CHILDREN8080711. (PMID: 10.3390/CHILDREN8080711344386028392575)
Parvizi J, Le S, Foster BL et al (2011) Gelastic epilepsy and hypothalamic hamartomas: neuroanatomical analysis of brain lesions in 100 patients. Brain 134:2960–2968. https://doi.org/10.1093/brain/awr235. (PMID: 10.1093/brain/awr23521975589)
Chan Y-MM, Fenoglio-Simeone KA, Paraschos S et al (2010) Central precocious puberty due to hypothalamic hamartomas correlates with anatomic features but not with expression of GnRH, TGFalpha, or KISS1. Horm Res Paediatr 73:312–319. https://doi.org/10.1159/000308162. (PMID: 10.1159/000308162203891002868525)
Cheung CS, Parrent AG, Burneo JG (2007) Gelastic seizures: Not always hypothalamic hamartoma. Epileptic Disorders 9:453–458. https://doi.org/10.1684/EPD.2007.0139. (PMID: 10.1684/EPD.2007.013918077234)
Iapadre G, Zagaroli L, Cimini N et al (2020) Gelastic seizures not associated with hypothalamic hamartoma: A long-term follow-up study. Epilepsy Behav 103:106578. https://doi.org/10.1016/j.yebeh.2019.106578. (PMID: 10.1016/j.yebeh.2019.10657831680025)
Coons SW, Rekate HL, Prenger EC et al (2007) The histopathology of hypothalamic hamartomas: Study of 57 cases. J Neuropathol Exp Neurol 66:131–141. https://doi.org/10.1097/nen.0b013e3180302090. (PMID: 10.1097/nen.0b013e318030209017278998)
Argyropoulou MI, Kiortsis DN (2005) MRI of the hypothalamic-pituitary axis in children. Pediatr Radiol 35:1045–1055. https://doi.org/10.1007/s00247-005-1512-9. (PMID: 10.1007/s00247-005-1512-915928924)
Warmuth-Metz M, Gnekow AK, Müller H, Solymosi L (2004) Differential Diagnosis of Suprasellar Tumors in Children. Klin Padiatr 216:323–330. https://doi.org/10.1055/s-2004-832358. (PMID: 10.1055/s-2004-83235815565547)
Amstutz DR, Coons SW, Kerrigan JF et al (2006) Hypothalamic Hamartomas: Correlation of MR Imaging and Spectroscopic Findings with Tumor Glial Content. AJNR Am J Neuroradiol 27:794. (PMID: 166117668133985)
Freeman JL, Coleman LT, Wellard RM et al (2004) MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol 25:450–462. (PMID: 150374728158567)
Pope WB, Brandal G (2018) Conventional and advanced magnetic resonance imaging in patients with high-grade glioma. The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of. 62:239. https://doi.org/10.23736/S1824-4785.18.03086-8.
Sartoretti-Schefer S, Wichmann W, Aguzzi A, Valavanis A (1997) MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR Am J Neuroradiol 18:77. (PMID: 90105238337875)
Wu CC, Guo WY, Chang FC et al (2017) MRI features of pediatric intracranial germ cell tumor subtypes. J Neurooncol 134:221–230. https://doi.org/10.1007/S11060-017-2513-X. (PMID: 10.1007/S11060-017-2513-X28551848)
Kousi E, Tsougos I, Eftychia K et al (2013) Proton Magnetic Resonance Spectroscopy of the Central Nervous System. Novel Front Adv Neuroimaging. https://doi.org/10.5772/53892.
Soares DP, Law M (2009) Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 64:12–21. https://doi.org/10.1016/j.crad.2008.07.002. (PMID: 10.1016/j.crad.2008.07.00219070693)
Verma A, Kumar I, Verma N et al (2016) Magnetic resonance spectroscopy - Revisiting the biochemical and molecular milieu of brain tumors. BBA Clin 5:170–178. https://doi.org/10.1016/j.bbacli.2016.04.002. (PMID: 10.1016/j.bbacli.2016.04.002271585924845155)
Chernov MF, Hayashi M, Izawa M et al (2006) Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: Variations of metabolic profile. Int J Clin Oncol 11:375–384. https://doi.org/10.1007/S10147-006-0589-Y. (PMID: 10.1007/S10147-006-0589-Y17058135)
Nakamura Y, Inoue A, Nishikawa M et al (2022) Quantitative measurement of peritumoral concentrations of glutamate, N-acetyl aspartate, and lactate on magnetic resonance spectroscopy predicts glioblastoma-related refractory epilepsy. Acta Neurochir (Wien) 164:3253–3266. https://doi.org/10.1007/s00701-022-05363-y. (PMID: 10.1007/s00701-022-05363-y36107232)
Branzoli F, Salgues B, Marjańska M et al (2023) SDHx mutation and pituitary adenoma: can in vivo 1H-MR spectroscopy unravel the link? Endocr Relat Cancer 30. https://doi.org/10.1530/ERC-22-0198.
Di Stefano AL, Nichelli L, Berzero G et al (2023) In Vivo 2-Hydroxyglutarate Monitoring With Edited MR Spectroscopy for the Follow-up of IDH-Mutant Diffuse Gliomas. Neurology 100:e94–e106. https://doi.org/10.1212/WNL.0000000000201137. (PMID: 10.1212/WNL.000000000020113736180241)
Liserre R, Pinelli L, Gasparotti R (2021) MR spectroscopy in pediatric neuroradiology. Transl Pediatr 10:1169–1200. https://doi.org/10.21037/TP-20-445. (PMID: 10.21037/TP-20-445340128618107850)
Nikam RM, Yue X, Kaur G, et al (2022) Advanced Neuroimaging Approaches to Pediatric Brain Tumors. Cancers (Basel) 14:. https://doi.org/10.3390/CANCERS14143401.
Blüml S, Saunders A, Tamrazi B (2022) Proton MR Spectroscopy of Pediatric Brain Disorders. Diagnostics 12:. https://doi.org/10.3390/DIAGNOSTICS12061462.
Nabavizadeh SA, Assadsangabi R, Hajmomenian M et al (2015) High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma. Neuroradiology 57:527–533. https://doi.org/10.1007/S00234-015-1497-5. (PMID: 10.1007/S00234-015-1497-525666232)
Sutton LN, Wang ZJ, Wehrli SL et al (1997) Proton spectroscopy of suprasellar tumors in pediatric patients. Neurosurgery 41:388–395. https://doi.org/10.1097/00006123-199708000-00009. (PMID: 10.1097/00006123-199708000-000099257306)
Blüml S, Panigrahy A, Laskov M et al (2011) Elevated citrate in pediatric astrocytomas with malignant progression. Neuro Oncol 13:1107–1117. https://doi.org/10.1093/NEUONC/NOR087. (PMID: 10.1093/NEUONC/NOR087217718683177657)
Astrakas LG, Zurakowski D, Tzika AA et al (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220–8228. https://doi.org/10.1158/1078-0432.CCR-04-0603. (PMID: 10.1158/1078-0432.CCR-04-060315623597)
Panigrahy A, Jakacki RI, Pollack IF, et al (2022) Magnetic Resonance Spectroscopy Metabolites as Biomarkers of Disease Status in Pediatric Diffuse Intrinsic Pontine Gliomas (DIPG) Treated with Glioma-Associated Antigen Peptide Vaccines. Cancers (Basel) 14:. https://doi.org/10.3390/cancers14235995.
Warren KE (2009) Noninvasive assessment of pediatric brain tumors. Cancer Biol Ther 8:1881–1888. https://doi.org/10.4161/CBT.8.20.9805. (PMID: 10.4161/CBT.8.20.980519738439)
Gill SK, Wilson M, Davies NP et al (2014) Diagnosing relapse in children’s brain tumors using metabolite profiles. Neuro Oncol 16:156–164. https://doi.org/10.1093/neuonc/not143. (PMID: 10.1093/neuonc/not14324305716)
Tasch E, Cendes F, Li L et al (1998) Hypothalamic hamartomas and gelastic epilepsy: a spectroscopic study. Neurology 51:1046–1050. https://doi.org/10.1212/WNL.51.4.1046. (PMID: 10.1212/WNL.51.4.10469781527)
Amstutz DR, Coons SW, Kerrigan JF et al (2006) Hypothalamic hamartomas: Correlation of MR imaging and spectroscopic findings with tumor glial content. AJNR Am J Neuroradiol 27:794–798. (PMID: 166117668133985)
Shah T, Jayasundar R, Singh VP, Sarkar C (2011) In vivo MRS study of intraventricular tumors. J Magn Reson Imaging 34:1053–1059. https://doi.org/10.1002/jmri.22711. (PMID: 10.1002/jmri.2271122002756)
Akai T, Okamoto K, Iizuka H et al (2002) Treatments of hamartoma with neuroendoscopic surgery and stereotactic radiosurgery: a case report. Minim Invasive Neurosurg 45:235–239. https://doi.org/10.1055/S-2002-36196. (PMID: 10.1055/S-2002-3619612494360)
Martin DD, Seeger U, Ranke MB, Grodd W (2003) MR Imaging and Spectroscopy of a Tuber Cinereum Hamartoma in a Patient with Growth Hormone Deficiency and Hypogonadotropic Hypogonadism. AJNR Am J Neuroradiol 24:1177–1180. (PMID: 128129508149032)
Chernov M, Kawamata T, Amano K et al (2009) Possible role of single-voxel (1)H-MRS in differential diagnosis of suprasellar tumors. J Neurooncol 91:191–198. https://doi.org/10.1007/S11060-008-9698-Y. (PMID: 10.1007/S11060-008-9698-Y18825316)
Norfray J, Darling C, Byrd S et al (1999) Short TE proton MRS and neurofibromatosis type 1 intracranial lesions. J Comput Assist Tomogr 23:994–1003. https://doi.org/10.1097/00004728-199911000-00033. (PMID: 10.1097/00004728-199911000-0003310589584)
Rigotti DJ, Inglese M, Gonen O (2007) Whole-Brain N-Acetylaspartate as a Surrogate Marker of Neuronal Damage in Diffuse Neurologic Disorders. Am J Neuroradiol 28:1843–1849. https://doi.org/10.3174/AJNR.A0774. (PMID: 10.3174/AJNR.A0774179212268134227)
Clark JB (1998) N-Acetyl Aspartate: A Marker for Neuronal Loss or Mitochondrial Dysfunction. Dev Neurosci 20:271–276. https://doi.org/10.1159/000017321. (PMID: 10.1159/0000173219778562)
Iorio E, Podo F, Leach MO et al (2021) A novel roadmap connecting the 1H-MRS total choline resonance to all hallmarks of cancer following targeted therapy. Eur Radiol Exp 5:1–14. https://doi.org/10.1186/S41747-020-00192-Z/FIGURES/4. (PMID: 10.1186/S41747-020-00192-Z/FIGURES/4)
Seith A, Kandpal H, Khadgawat R (2008) Hypothalamic hamartoma: MR imaging and MR spectroscopic features. Singapore Med J 49:366–367. (PMID: 18418535)
Castillo M, Kwock L, Green C et al (1995) Proton MR spectroscopy in a possible enhancing hamartoma in a patient with neurofibromatosis type 1. Am J Neuroradiol 16:993–996. (PMID: 76110948332284)
Broniscer A, Gajjar A, Bhargava R et al (1997) Brain stem involvement in children with neurofibromatosis type 1: role of magnetic resonance imaging and spectroscopy in the distinction from diffuse pontine glioma. Neurosurgery 40:331–338. https://doi.org/10.1097/00006123-199702000-00018. (PMID: 10.1097/00006123-199702000-000189007866)
Ladd ME, Bachert P, Meyerspeer M et al (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50. https://doi.org/10.1016/j.pnmrs.2018.06.001. (PMID: 10.1016/j.pnmrs.2018.06.00130527132)
Henning A (2018) Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 168:181–198. https://doi.org/10.1016/j.neuroimage.2017.07.017. (PMID: 10.1016/j.neuroimage.2017.07.01728712992)
Pandya HG, Wilkinson ID, Agarwal SK, Griffiths PD (2005) The nonspecific nature of proton spectroscopy in brain masses in children: A series of demyelinating lesions. Neuroradiology 47:955–959. https://doi.org/10.1007/S00234-003-0947-7. (PMID: 10.1007/S00234-003-0947-715776226)
Davies NP, Rose HEL, Manias KA et al (2022) Added value of magnetic resonance spectroscopy for diagnosing childhood cerebellar tumours. NMR Biomed 35. https://doi.org/10.1002/NBM.4630.
Shiroishi MS, Panigrahy A, Moore KR et al (2015) Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone. Neuroradiology 57:951. https://doi.org/10.1007/S00234-015-1553-1. (PMID: 10.1007/S00234-015-1553-1261418524936898)
فهرسة مساهمة: Keywords: Central precocious puberty; Hypothalamic hamartoma; In vivo magnetic resonance spectroscopy
SCR Disease Name: Hypothalamic hamartomas
تواريخ الأحداث: Date Created: 20230626 Date Completed: 20230831 Latest Revision: 20230831
رمز التحديث: 20231215
DOI: 10.1007/s42000-023-00458-2
PMID: 37365434
قاعدة البيانات: MEDLINE
الوصف
تدمد:2520-8721
DOI:10.1007/s42000-023-00458-2