دورية أكاديمية

Bumetanide Attenuates Cognitive Deficits and Brain Damage in Rats Subjected to Hypoxia-Ischemia at Two Time Points of the Early Postnatal Period.

التفاصيل البيبلوغرافية
العنوان: Bumetanide Attenuates Cognitive Deficits and Brain Damage in Rats Subjected to Hypoxia-Ischemia at Two Time Points of the Early Postnatal Period.
المؤلفون: Machado DN; Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil. diorlon@outlook.com., Durán-Carabali LE; Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil., Odorcyk FK; Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil., Carvalho AVS; Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil., Martini APR; Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil., Schlemmer LM; Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil., de Mattos MM; Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil., Bernd GP; Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil., Dalmaz C; Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil., Netto CA; Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.; Departament of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
المصدر: Neurotoxicity research [Neurotox Res] 2023 Dec; Vol. 41 (6), pp. 526-545. Date of Electronic Publication: 2023 Jun 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 100929017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-3524 (Electronic) Linking ISSN: 10298428 NLM ISO Abbreviation: Neurotox Res Subsets: MEDLINE
أسماء مطبوعة: Publication: <2009-> : New York : Springer
Original Publication: [Amsterdam?] : Harwood Academic Publishers,
مواضيع طبية MeSH: Bumetanide*/pharmacology , Bumetanide*/therapeutic use , Hypoxia-Ischemia, Brain*/complications , Hypoxia-Ischemia, Brain*/drug therapy, Rats ; Animals ; Male ; Rats, Wistar ; Solute Carrier Family 12, Member 2/metabolism ; Ischemia/drug therapy ; Hypoxia/drug therapy ; Brain/metabolism ; Cognition ; Animals, Newborn
مستخلص: Neonatal hypoxia-ischemia (HI) is one of the main causes of tissue damage, cell death, and imbalance between neuronal excitation and inhibition and synaptic loss in newborns. GABA, the major inhibitory neurotransmitter of the central nervous system (CNS) in adults, is excitatory at the onset of neurodevelopment and its action depends on the chloride (Cl - ) cotransporters NKCC1 (imports Cl - ) and KCC2 (exports Cl - ) expression. Under basal conditions, the NKCC1/KCC2 ratio decreases over neurodevelopment. Thus, changes in this ratio caused by HI may be related to neurological disorders. The present study evaluated the effects of bumetanide (NKCC cotransporters inhibitor) on HI impairments in two neurodevelopmental periods. Male Wistar rat pups, 3 (PND3) and 11 (PND11) days old, were submitted to the Rice-Vannucci model. Animals were divided into 3 groups: SHAM, HI-SAL, and HI-BUM, considering each age. Bumetanide was administered intraperitoneally at 1, 24, 48, and 72 h after HI. NKCC1, KCC2, PSD-95, and synaptophysin proteins were analyzed after the last injection by western blot. Negative geotaxis, righting reflex, open field, object recognition test, and Morris water maze task were performed to assess neurological reflexes, locomotion, and memory function. Tissue atrophy and cell death were evaluated by histology. Bumetanide prevented neurodevelopmental delay, hyperactivity, and declarative and spatial memory deficits. Furthermore, bumetanide reversed HI-induced brain tissue damage, reduced neuronal death and controlled GABAergic tone, maintained the NKCC1/KCC2 ratio, and synaptogenesis close to normality. Thereby, bumetanide appears to play an important therapeutic role in the CNS, protecting the animals against HI damage and improving functional performance.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739. https://doi.org/10.1038/nrn920. (PMID: 10.1038/nrn92012209121)
Ben-Ari Y (2017) NKCC1 chloride importer antagonists attenuate many neurological and psychiatric disorders. Trends Neurosci 40:536–554. https://doi.org/10.1016/j.tins.2017.07.001. (PMID: 10.1016/j.tins.2017.07.00128818303)
Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18(5):467–486. https://doi.org/10.1177/1073858412438697. (PMID: 10.1177/107385841243869722547529)
Ben-Ari Y, Tseeb V, Raggozzino D, Khazipov R, Gaiarsa JL (1994) γ-aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Prog Brain Res 102:261–273. https://doi.org/10.1016/S0079-6123(08)60545-2. (PMID: 10.1016/S0079-6123(08)60545-27800817)
Bie B, Wu J, Lin F, Naguib M, Xu J (2022) Suppression of hippocampal GABAergic transmission impairs memory in rodent models of Alzheimer’s disease. Eur J Pharmacol 917:174771. https://doi.org/10.1016/j.ejphar.2022.174771. (PMID: 10.1016/j.ejphar.2022.17477135041847)
Blaesse P, Schmidt T (2015) K-Cl cotransporter KCC2 – a moonlighting protein in excitatory and inhibitory synapse development and function. Pflugers Arch Eur J Physiol 467:615–624. https://doi.org/10.1007/s00424-014-1547-6. (PMID: 10.1007/s00424-014-1547-6)
Brater DC (2000) Pharmacology of diuretics. Am J Med Sci 319:38–50. https://doi.org/10.1097/00000441-200001000-00004. (PMID: 10.1097/00000441-200001000-0000410653443)
Brekke E, Berger HR, Widerøe M, Sonnewald U, Morken TS (2017) Glucose and intermediary metabolism and astrocyte–neuron interactions following neonatal hypoxia–ischemia in rat. Neurochem Res 42:115–132. https://doi.org/10.1007/s11064-016-2149-9. (PMID: 10.1007/s11064-016-2149-928019006)
Buzsáki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56:771–783. https://doi.org/10.1016/j.neuron.2007.11.008. (PMID: 10.1016/j.neuron.2007.11.008180548552266612)
Caravagna C, Casciato A, Coq JO, Liabeuf S, Brocard C, Peyronnet J, Bodineau L, Cayetanot F (2022) Prenatal hypoxia induces Cl - cotransporters KCC2 and NKCC1 developmental abnormality and disturbs the influence of GABA A and glycine receptors on fictive breathing in a newborn rat. Front Physiol. https://doi.org/10.3389/fphys.2022.786714. (PMID: 10.3389/fphys.2022.786714352506098890663)
Carvalho AVS, Ribeiro RT, Elena L, Martini APR, Hoeper E, Sanches EF, Konrath EL, Dalmaz C, Wajner M, Netto CA (2022) Plinia trunciflora extract administration prevents HI-induced oxidative stress, inflammatory response, behavioral impairments, and tissue damage in rats. 1:1–19. https://doi.org/10.3390/nu14020395.
Cellot G, Cherubini E (2013) Functional role of ambient GABA in refining neuronal circuits early in postnatal development. Front Neural Circuits 7:1–9. https://doi.org/10.3389/fncir.2013.00136. (PMID: 10.3389/fncir.2013.00136)
Chalak LF, Rollins N, Morriss MC, Brion LP, Heyne R, Sánchez PJ (2012) Perinatal acidosis and hypoxic-ischemic encephalopathy in preterm infants of 33 to 35 weeks’ gestation. J Pediatr 160:388–394. https://doi.org/10.1016/j.jpeds.2011.09.001. (PMID: 10.1016/j.jpeds.2011.09.00122033298)
Durán-Carabali LE, Arcego DM, Odorcyk FK, Reichert L, Cordeiro JL, Sanches EF, Freitas LD, Dalmaz C, Pagnussat A, Netto CA (2018) Prenatal and early postnatal environmental enrichment reduce acute cell death and prevent neurodevelopment and memory impairments in rats submitted to neonatal hypoxia ischemia. Mol Neurobiol 55:3627–3641. https://doi.org/10.1007/s12035-017-0604-5. (PMID: 10.1007/s12035-017-0604-528523564)
Durán-Carabali LE, Arcego DM, Sanches EF, Odorcyk FK, Marques MR, Tosta A, Reichert L, Carvalho AS, Dalmaz C, Netto CA (2019) Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia. Behav Brain Res 359:485–497. https://doi.org/10.1016/j.bbr.2018.11.036. (PMID: 10.1016/j.bbr.2018.11.03630496770)
Durán-Carabali LE, Sanches EF, Marques MR, Aristimunha D, Pagnussat A, Netto CA (2017) Longer hypoxia-ischemia periods to neonatal rats causes motor impairments and muscular changes. Neuroscience 340:291–298. https://doi.org/10.1016/j.neuroscience.2016.10.068. (PMID: 10.1016/j.neuroscience.2016.10.06827826103)
Fabres RB, da Rosa LA, de Souza SK, Cecconello AL, Azambuja AS, Sanches EF, Ribeiro MFM, de Fraga LS (2018) Effects of progesterone on the neonatal brain following hypoxia-ischemia. Metab Brain Dis 33:813–821. https://doi.org/10.1007/s11011-018-0193-7. (PMID: 10.1007/s11011-018-0193-729363039)
Fabres RB, Montes NL, Camboim YDM, de Souza SK, Nicola F, Tassinari ID, Ribeiro MFM, Netto CA, de Fraga LS (2020) Long-lasting actions of progesterone protect the neonatal brain following hypoxia-ischemia. Cell Mol Neurobiol 40:1417–1428. https://doi.org/10.1007/s10571-020-00827-0. (PMID: 10.1007/s10571-020-00827-032170571)
Fan LW, Lin S, Pang Y, Lei M, Zhang F, Rhodes PG, Cai Z (2005) Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat. Behav Brain Res 165:80–90. https://doi.org/10.1016/j.bbr.2005.06.033. (PMID: 10.1016/j.bbr.2005.06.03316140403)
Furukawa M, Tsukahara T, Tomita K, Iwai H, Sonomura T, Miyawaki S, Sato T (2017) Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression. Biochem Biophys Res Commun 493:1243–1249. https://doi.org/10.1016/j.bbrc.2017.09.143. (PMID: 10.1016/j.bbrc.2017.09.14328962859)
Galeffi F, Sah R, Pond BB, George A, Schwartz-Bloom RD (2004) Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam. J Neurosci 24:4478–4488. https://doi.org/10.1523/jneurosci.0755-04.2004. (PMID: 10.1523/jneurosci.0755-04.2004151288626729443)
Garman RH (2011) Histology of the central nervous system. Toxicol Pathol 39:22–35. https://doi.org/10.1177/0192623310389621. (PMID: 10.1177/019262331038962121119051)
Goubert E, Altvater M, Rovira MN, Khalilov I, Mazzarino M, Sebastiani A, Schaefer MKE, Rivera C, Pellegrino C (2019) Bumetanide prevents brain trauma-induced depressive-like behavior. Front Mol Neurosci 12:1–18. https://doi.org/10.3389/fnmol.2019.00012. (PMID: 10.3389/fnmol.2019.00012)
Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P (2015) The role of inflammation in perinatal brain injury. Nat Rev Neurol 11:192–208. https://doi.org/10.1038/nrneurol.2015.13. (PMID: 10.1038/nrneurol.2015.13256867544664161)
Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545. https://doi.org/10.1523/jneurosci.5297-05.2006. (PMID: 10.1523/jneurosci.5297-05.2006166412336674060)
Hermans RHM, Hunter DE, Mcgivern RF, Cain CD, Longo LD (1992) Behavioral sequelae in young rats of acute intermittent antenatal hypoxia. Neurotoxicol Teratol 14:119–129. https://doi.org/10.1016/0892-0362(92)90060-N. (PMID: 10.1016/0892-0362(92)90060-N1593986)
Holmes GL, Tian C, Hernan AE, Flynn S, Camp D, Barry J (2015) Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide. Neurobiol Dis 77:204–219. https://doi.org/10.1016/j.nbd.2015.02.015. (PMID: 10.1016/j.nbd.2015.02.015257666764682568)
Hu JJ, Yang XL, Di LW, Han S, Yin J, Liu WH, He XH, Peng BW (2017) Bumetanide reduce the seizure susceptibility induced by pentylenetetrazol via inhibition of aberrant hippocampal neurogenesis in neonatal rats after hypoxia-ischemia. Brain Res Bull 130:188–199. https://doi.org/10.1016/j.brainresbull.2017.01.022. (PMID: 10.1016/j.brainresbull.2017.01.02228161194)
Huang HZ, Wen XH, Liu H (2016) Sex differences in brain MRI abnormalities and neurodevelopmental outcomes in a rat model of neonatal hypoxia-ischemia. Int J Neurosci 126:647–657. https://doi.org/10.3109/00207454.2015.1047016. (PMID: 10.3109/00207454.2015.104701626289716)
Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB (2008) Roles of the cation-chloride cotransporters in neurological disease. Nat Clin Pract Neurol 4:490–503. https://doi.org/10.1038/ncpneuro0883. (PMID: 10.1038/ncpneuro088318769373)
Kaila K, Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M (1999) The K + /Cl - co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255. https://doi.org/10.1038/16697. (PMID: 10.1038/166979930699)
Katnik C, Cuevas J (2021) Loop diuretics inhibit ischemia-induced intracellular Ca 2+ overload in neurons via the inhibition of voltage-gated Ca 2+ and Na + channels. Front Pharmacol 12:1–13. https://doi.org/10.3389/fphar.2021.732922. (PMID: 10.3389/fphar.2021.732922)
Koyama Y, Andoh T, Kamiya Y, Morita S, Miyazaki T, Uchimoto K, Mihara T, Goto T (2013) Bumetanide, an inhibitor of cation-chloride cotransporter isoform 1, inhibits γ-aminobutyric acidergic excitatory actions and enhances sedative actions of midazolam in neonatal rats. Anesthesiology 119:1096–1108. https://doi.org/10.1097/ALN.0b013e31829e4b05. (PMID: 10.1097/ALN.0b013e31829e4b0523788048)
Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86:329–338. https://doi.org/10.1016/j.earlhumdev.2010.05.010. (PMID: 10.1016/j.earlhumdev.2010.05.01020554402)
Liu N, Tong X, Huang W, Fu J, Xue X (2019) Synaptic injury in the thalamus accompanies white matter injury in hypoxia/ischemia-mediated brain injury in neonatal rats. Biomed Res Int. https://doi.org/10.1155/2019/5249675. (PMID: 10.1155/2019/5249675329088646955115)
Löscher W, Kaila K (2022) CNS pharmacology of NKCC1 inhibitors. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2021.108910. (PMID: 10.1016/j.neuropharm.2021.10891034883135)
Lu KT, Wu CY, Cheng NC, Wo YYP, Yang JT, Yen HH, Yang YL (2006) Inhibition of the Na+-K+-2Cl–cotransporter in choroid plexus attenuates traumatic brain injury-induced brain edema and neuronal damage. Eur J Pharmacol 548:99–105. https://doi.org/10.1016/j.ejphar.2006.07.048. (PMID: 10.1016/j.ejphar.2006.07.04816962576)
Luo WD, Wei MJ, Huang WX, Wang X, Yuan PY, Han S, Yin J, Liu WH, He XH, Peng BW (2018) Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1. J Neuroinflammation 15:1–15. https://doi.org/10.1186/s12974-018-1221-6. (PMID: 10.1186/s12974-018-1221-6)
Marín O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13:107–120. https://doi.org/10.1038/nrn3155. (PMID: 10.1038/nrn315522251963)
Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594. https://doi.org/10.1016/j.tins.2004.08.001. (PMID: 10.1016/j.tins.2004.08.00115374669)
Mu XP, Wang HB, Cheng X, Yang L, Sun XY, Qu HL, Zhao SS, Zhou ZK, Liu TT, Xiao T, Song B, Jolkkonen J, Zhao CS (2017) Inhibition of Nkcc1 promotes axonal growth and motor recovery in ischemic rats. Neuroscience 365:83–93. https://doi.org/10.1016/j.neuroscience.2017.09.036. (PMID: 10.1016/j.neuroscience.2017.09.03628964752)
Netto CA, Hodges H, Sinden JD, Le Peillet E, Kershaw T, Sowinski P, Meldrum BS, Gray JA (1993) Effects of fetal hippocampal field grafts on ischaemic-induced deficits in spatial navigation in the water maze. Neuroscience 54:69–92. https://doi.org/10.1016/0306-4522(93)90384-r. (PMID: 10.1016/0306-4522(93)90384-r8515847)
Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D (2016) Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 108:24–33. https://doi.org/10.1016/j.neures.2016.01.008. (PMID: 10.1016/j.neures.2016.01.008268517694903952)
O’Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE (2004) Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 24:1046–1056. https://doi.org/10.1097/01.WCB.0000130867.32663.90. (PMID: 10.1097/01.WCB.0000130867.32663.9015356425)
Odorcyk FK, Ribeiro RT, Roginski AC, Duran-Carabali LE, Couto-Pereira NS, Dalmaz C, Wajner M, Netto CA (2021) Differential age-dependent mitochondrial dysfunction, oxidative stress, and apoptosis induced by neonatal hypoxia-ischemia in the immature rat brain. Mol Neurobiol 58:2297–2308. https://doi.org/10.1007/s12035-020-02261-1. (PMID: 10.1007/s12035-020-02261-133417220)
Owens DF, Boyce LH, Davis MB, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423. https://doi.org/10.1523/jneurosci.16-20-06414.1996. (PMID: 10.1523/jneurosci.16-20-06414.199688159206578913)
Pagnussat AS, Simao F, Anastacio JR, Mestriner RG, Michaelsen SM, Castro CC, Salbego C, Netto CA (2012) Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats. Brain Res 1486:53–61. https://doi.org/10.1016/j.brainres.2012.09.019. (PMID: 10.1016/j.brainres.2012.09.01923022567)
Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego.
Peña F, Ramirez JM (2005) Hypoxia-induced changes in neuronal network properties. Mol Neurobiol 32:251–283. https://doi.org/10.1385/MN:32:3:251. (PMID: 10.1385/MN:32:3:25116385141)
Plotkin MD, Snyder EY, Hebert SC, Delpire E (1997) Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA’s excitatory role in immature brain. J Neurobiol 33:781–795. https://doi.org/10.1002/(SICI)1097-4695(19971120)33:6%3C781::AID-NEU6%3E3.0.CO;2-5. (PMID: 10.1002/(SICI)1097-4695(19971120)33:6%3C781::AID-NEU6%3E3.0.CO;2-59369151)
Pugh JR, Jahr CE (2011) Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci 31:565–574. https://doi.org/10.1523/jneurosci.4506-10.2011. (PMID: 10.1523/jneurosci.4506-10.2011212281653242478)
Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498. https://doi.org/10.1002/ana.410110509. (PMID: 10.1002/ana.4101105097103425)
Ramamoorthi K, Lin Y (2011) The contribution of GABAergic dysfunction to neurodevelopmental disorders. Trends Mol Med 17:452–462. https://doi.org/10.1016/j.molmed.2011.03.003. (PMID: 10.1016/j.molmed.2011.03.003215142253152662)
Rezaie P, Dean A (2002) Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 22:106–132. https://doi.org/10.1046/j.1440-1789.2002.00438.x. (PMID: 10.1046/j.1440-1789.2002.00438.x12416551)
Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141. https://doi.org/10.1002/ana.410090206. (PMID: 10.1002/ana.4100902067235629)
Rocha-Ferreira E, Hristova M (2016) Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plast. https://doi.org/10.1155/2016/4901014. (PMID: 10.1155/2016/4901014270696934812471)
Rojas JJ, Deniz BF, Miguel PM, Diaz R, do Espírito-Santo Hermel E, Achaval M, Netto CA, Pereira LO (2013) Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp Neurol 241:25–33. https://doi.org/10.1016/j.expneurol.2012.11.026. (PMID: 10.1016/j.expneurol.2012.11.02623219882)
Sanches EF, Arteni N, Nicola F, Aristimunha D, Netto CA (2015) Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia-ischemia in P3 and P7 rats. Neuroscience 290:581–593. https://doi.org/10.1016/j.neuroscience.2014.12.074. (PMID: 10.1016/j.neuroscience.2014.12.07425620049)
Sanches EF, Arteni NS, Nicola F, Boisserand L, Willborn S, Netto CA (2013) Early hypoxia-ischemia causes hemisphere and sex-dependent cognitive impairment and histological damage. Neuroscience 237:208–215. https://doi.org/10.1016/j.neuroscience.2013.01.066. (PMID: 10.1016/j.neuroscience.2013.01.06623395861)
Sanches EF, Arteni NS, Spindler C, Moysés F, Siqueira IR, Perry ML, Netto CA (2012) Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats. Brain Res 1438:85–92. https://doi.org/10.1016/j.brainres.2011.12.024. (PMID: 10.1016/j.brainres.2011.12.02422244305)
Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, Brennan KC (2020) Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Invest 130:6005–6020. https://doi.org/10.1172/JCI134793. (PMID: 10.1172/JCI134793330442277598047)
Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta - Biomembr 1666:105–117. https://doi.org/10.1016/j.bbamem.2004.04.011. (PMID: 10.1016/j.bbamem.2004.04.011)
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001. (PMID: 10.1016/j.pneurobio.2013.04.00123583307)
Shankar SS, Brater DC (2003) Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol 284:11–21. https://doi.org/10.1152/ajprenal.00119.2002. (PMID: 10.1152/ajprenal.00119.2002)
Shulga A, Magalhães AC, Autio H, Plantman S, di Lieto A, Nykjaer A, Carlstedt T, Risling M, Arumäe U, Castrén E, Rivera C (2012) The loop diuretic bumetanide blocks posttraumatic p75 NTR upregulation and rescues injured neurons. J Neurosci 32:1757–1770. https://doi.org/10.1523/JNEUROSCI.3282-11.2012. (PMID: 10.1523/JNEUROSCI.3282-11.2012223028156703341)
Sizonenko SV, Sirimanne E, Mayall Y, Gluckman PD, Inder T, Williams C (2003) Selective cortical alteration after hypoxic-ischemic injury in the very immature rat brain. Pediatr Res 54:263–269. https://doi.org/10.1203/01.PDR.0000072517.01207.87. (PMID: 10.1203/01.PDR.0000072517.01207.8712736386)
Sullivan RM, Gratton A (2002) Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology 27:99–114. https://doi.org/10.1016/S0306-4530(01)00038-5. (PMID: 10.1016/S0306-4530(01)00038-511750772)
Tassinari IDÁ, Andrade MKG, da Rosa LA, Hoff MLM, Nunes RR, Vogt EL, Fabres RB, Sanches EF, Netto CA, Paz AH, de Fraga LS (2020) Lactate administration reduces brain injury and ameliorates behavioral outcomes following neonatal hypoxia–ischemia. Neuroscience 448:191–205. https://doi.org/10.1016/j.neuroscience.2020.09.006. (PMID: 10.1016/j.neuroscience.2020.09.00632905840)
Ten VS, Bradley-Moore M, Gingrich JA, Stark RI, Pinsky DJ (2003) Brain injury and neurofunctional deficit in neonatal mice with hypoxic-ischemic encephalopathy. Behav Brain Res 145:209–219. https://doi.org/10.1016/S0166-4328(03)00146-3. (PMID: 10.1016/S0166-4328(03)00146-314529818)
Tzanoulinou S, García-Mompó C, Castillo-Gómez E, Veenit V, Nacher J, Sandi C (2014) Long-term behavioral programming induced by peripuberty stress in rats is accompanied by gabaergic-related alterations in the amygdala. PLoS One 9. https://doi.org/10.1371/journal.pone.0094666.
Ujike H, Takaki M, Kodama M, Kuroda S, Ujike H (2002) Gene expression related to synaptogenesis, neuritogenesis, and MAP kinase in behavioral sensitization to psychostimulants. https://doi.org/10.1111/j.1749-6632.2002.tb04151.x.
Vannucci SJ, Hagberg H (2004) Hypoxia-ischemia in the immature brain. J Exp Biol 207:3149–3154. https://doi.org/10.1242/jeb.01064. (PMID: 10.1242/jeb.0106415299036)
Volpe JJ (2001) Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 7:56–64. https://doi.org/10.1002/1098-2779(200102)7:1%3C56::AID-MRDD1008%3E3.0.CO;2-A. (PMID: 10.1002/1098-2779(200102)7:1%3C56::AID-MRDD1008%3E3.0.CO;2-A11241883)
Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124. https://doi.org/10.1016/S1474-4422(08)70294-1. (PMID: 10.1016/S1474-4422(08)70294-1190815192707149)
Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587:1873–1879. https://doi.org/10.1113/jphysiol.2008.167635. (PMID: 10.1113/jphysiol.2008.167635191531582689328)
Wang G, Huang H, He Y, Ruan L, Huang J (2014) Bumetanide protects focal cerebral ischemia-reperfusion injury in rat. Int J Clin Exp Pathol 7:1487–1494. (PMID: 248179444014228)
Wittner M, Di Stefano A, Wangemann P, Greger R (1991) How do loop diuretics act? Drugs 41:1–13. https://doi.org/10.2165/00003495-199100413-00003. (PMID: 10.2165/00003495-199100413-000031712711)
Xiong F, Zhang L (2013) Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol 34:27–46. https://doi.org/10.1016/j.yfrne.2012.11.002. (PMID: 10.1016/j.yfrne.2012.11.00223200813)
Xiong T, Qu Y, Wang H, Chen H, Zhu J, Zhao F, Zou R, Zhang L, Mu D (2018) GSK-3β/mTORC1 couples synaptogenesis and axonal repair to reduce hypoxia ischemia-mediated brain injury in neonatal rats. J Neuropathol Exp Neurol 77:383–394. https://doi.org/10.1093/jnen/nly015. (PMID: 10.1093/jnen/nly01529506051)
Xiong T, Yang X, Qu Y, Chen H, Yue Y, Wang H, Zhao F, Li S, Zou R, Zhang L, Mu D (2019) Erythropoietin induces synaptogenesis and neurite repair after hypoxia ischemia-mediated brain injury in neonatal rats. NeuroReport 30:783–789. https://doi.org/10.1097/WNR.0000000000001285. (PMID: 10.1097/WNR.000000000000128531261238)
Yamada H, Fujimoto K, Yoshida M (1995) Neuronal mechanism underlying dystonia induced by bicuculline injection into the putamen of the cat. Brain Res 677:333–336. https://doi.org/10.1016/0006-8993(95)00190-2. (PMID: 10.1016/0006-8993(95)00190-27552260)
Zhou J, Zhou T, Cao R, Liu Z, Shen J, Chen P, Wang X, Liang S (2006) Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. J Proteome Res 5:2547–2553. https://doi.org/10.1021/pr060112a. (PMID: 10.1021/pr060112a17022626)
فهرسة مساهمة: Keywords: Bumetanide; KCC2; NKCC1; Neonatal hypoxia–ischemia; Neurodevelopment; Synaptogenesis
المشرفين على المادة: 0Y2S3XUQ5H (Bumetanide)
0 (Solute Carrier Family 12, Member 2)
تواريخ الأحداث: Date Created: 20230628 Date Completed: 20231129 Latest Revision: 20231129
رمز التحديث: 20240628
DOI: 10.1007/s12640-023-00654-3
PMID: 37378827
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-3524
DOI:10.1007/s12640-023-00654-3