دورية أكاديمية

Long non-coding RNA in coronary artery disease: the role of PDXDC1-AS1 and SFI1-AS1.

التفاصيل البيبلوغرافية
العنوان: Long non-coding RNA in coronary artery disease: the role of PDXDC1-AS1 and SFI1-AS1.
المؤلفون: He S; Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China., Zhang S; Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China., Wang YJ; Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China., Gan XK; Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China., Chen JX; Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China., Zhou HX; Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China., Jia EZ; Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China. enzhijia@njmu.edu.cn.
المصدر: Functional & integrative genomics [Funct Integr Genomics] 2023 Jul 03; Vol. 23 (3), pp. 219. Date of Electronic Publication: 2023 Jul 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 100939343 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-7948 (Electronic) Linking ISSN: 1438793X NLM ISO Abbreviation: Funct Integr Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c2000-
مواضيع طبية MeSH: RNA, Long Noncoding*/metabolism , Coronary Artery Disease*/genetics , Coronary Artery Disease*/diagnosis, Humans ; Leukocytes, Mononuclear/metabolism ; Biomarkers/metabolism ; Transcriptome
مستخلص: This study investigates the interaction between long non-coding RNAs (lncRNAs) and metabolic risk factors that contribute to coronary artery disease (CAD). A total transcriptome high throughput sequencing study was conducted on peripheral blood mononuclear cells from five patients with CAD and five healthy controls. Validation assay by qRT-PCR was conducted among 270 patients and 47 controls. Finally, to evaluate the lncRNAs' diagnostic value for CAD, the Spearman correlation test and receiver operating characteristic curve (ROC) analysis were utilized. Additionally, univariate and multivariate logistic regression along with crossover analyses were conducted to identify the interaction between lncRNA and environmental risk factors. A total of 2149 of 26,027 lncRNAs identified by RNA sequencing were differentially expressed in CAD patients compared to controls. Validation by qRT-PCR showed significantly different relative expression levels for lncRNAs PDXDC1-AS1, SFI1-AS1, RP13-143G15.3, DAPK1-IT1, PPIE-AS1, and RP11-362A1.1 between the two groups (all P<0.05). The area under the ROC values of PDXDC1-AS1 and SFI1-AS1 is 0.645 (sensitivity=0.443 and specificity=0.920) and 0.629 (sensitivity=0.571 and specificity=0.909), especially. Multivariate logistic regression analyses showed that lncRNAs PDXDC1-AS1 (OR=2.285, 95%CI=1.390-3.754, p=0.001) and SFI1-AS1 (OR=1.163, 95%CI=1.163-2.264, p=0.004) were protective factors against CAD. Under the additive model, cross-over analyses demonstrated significant interactions between lncRNAs PDXDC1-AS1 and smoking in relation to CAD risk (S=3.871, 95%CI=1.140-6.599). PDXDC1-AS1 and SFI1-AS1 were sensitive and specific biomarkers for CAD and exhibited synergistic effects with certain environmental factors. These results highlighted their potential use as CAD diagnostic biomarkers for future research.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005.
Autuoro JM, Pirnie SP, Carmichael GG (2014) Long noncoding RNAs in imprinting and X chromosome inactivation. Biomolecules 4(1):76–100. https://doi.org/10.3390/biom4010076. (PMID: 10.3390/biom4010076249702064030979)
Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. https://doi.org/10.1016/j.cell.2013.02.012. (PMID: 10.1016/j.cell.2013.02.012234989383651923)
Bian W, Jiang XX, Wang Z et al (2021) Comprehensive analysis of the ceRNA network in coronary artery disease. Sci Rep 11(1):24279. https://doi.org/10.1038/s41598-021-03688-9. (PMID: 10.1038/s41598-021-03688-9349309808688464)
Brezinka V (1995) Gender bias in diagnosis and treatment of women with coronary heart disease. A review. Z Kardiol 84(2):99–104 Ungleichheiten bei Diagnostik und Behandlung von Frauen mit koronarer Herzkrankheit. Eine Ubersicht. (PMID: 7717024)
Cai Y, Yang Y, Chen X et al (2016a) Circulating “LncPPARdelta” from monocytes as a novel biomarker for coronary artery diseases. Medicine (Baltimore) 95(6):e2360. https://doi.org/10.1097/MD.0000000000002360. (PMID: 10.1097/MD.000000000000236026871769)
Cai Y, Yang Y, Chen X et al (2016b) Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 112(3):714–724. https://doi.org/10.1093/cvr/cvw022. (PMID: 10.1093/cvr/cvw02226857419)
Choi JH, Zhong X, McAlpine W et al (2019) LMBR1L regulates lymphopoiesis through Wnt/beta-catenin signaling. Science 364(6440). https://doi.org/10.1126/science.aau0812.
Dindhoria K, Monga I, Thind AS (2022) Computational approaches and challenges for identification and annotation of non-coding RNAs using RNA-Seq. Funct Integr Genomics 22(6):1105–1112. https://doi.org/10.1007/s10142-022-00915-y. (PMID: 10.1007/s10142-022-00915-y36409436)
Franzeck FC, Hof D, Spescha RD et al (2012) Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease. Atherosclerosis 220(1):282–286. https://doi.org/10.1016/j.atherosclerosis.2011.10.035. (PMID: 10.1016/j.atherosclerosis.2011.10.03522100252)
Gensini GG (1983) A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 51(3):606. https://doi.org/10.1016/s0002-9149(83)80105-2. (PMID: 10.1016/s0002-9149(83)80105-26823874)
Heidenreich PA, Trogdon JG, Khavjou OA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123(8):933–944. https://doi.org/10.1161/CIR.0b013e31820a55f5. (PMID: 10.1161/CIR.0b013e31820a55f521262990)
Hildebrandt A, Kirchner B, Meidert AS et al (2021) Detection of atherosclerosis by small RNA-sequencing analysis of extracellular vesicle enriched serum samples. Front Cell Dev Biol 9:729061. https://doi.org/10.3389/fcell.2021.729061. (PMID: 10.3389/fcell.2021.729061347126628546328)
Hu H, Lin Y, Xu X, Lin S, Chen X, Wang S (2020) The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 114:104412. https://doi.org/10.1016/j.yexmp.2020.104412. (PMID: 10.1016/j.yexmp.2020.10441232113905)
Jeggari A, Marks DS, Larsson E (2012) miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28(15):2062–2063. https://doi.org/10.1093/bioinformatics/bts344. (PMID: 10.1093/bioinformatics/bts344227187873400968)
Ji WF, Chen JX, He S et al (2021) Characteristics of circular RNAs expression of peripheral blood mononuclear cells in humans with coronary artery disease. Physiol Genomics 53(8):349–357. https://doi.org/10.1152/physiolgenomics.00020.2021. (PMID: 10.1152/physiolgenomics.00020.202134121455)
Jin G, Zheng J, Zhang Y, Yang Z, Chen Y, Huang C (2022) LncRNA UCA1 epigenetically suppresses APAF1 expression to mediate the protective effect of sevoflurane against myocardial ischemia-reperfusion injury. Funct Integr Genomics 22(5):965–975. https://doi.org/10.1007/s10142-022-00874-4. (PMID: 10.1007/s10142-022-00874-435723795)
Khamis RY, Ammari T, Mikhail GW (2016) Gender differences in coronary heart disease. Heart 102(14):1142–1149. https://doi.org/10.1136/heartjnl-2014-306463. (PMID: 10.1136/heartjnl-2014-30646327126397)
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141. (PMID: 10.1093/nar/gky114130423142)
Li L, Song X (2016) The working modules of long noncoding RNAs in cancer cells. Adv Exp Med Biol 927:49–67. https://doi.org/10.1007/978-981-10-1498-7&#95;2. (PMID: 10.1007/978-981-10-1498-7_227376731)
Li L, Wang L, Li H et al (2018) Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 275:359–367. https://doi.org/10.1016/j.atherosclerosis.2018.06.866. (PMID: 10.1016/j.atherosclerosis.2018.06.86630015300)
Li Q, Li B, Wang X et al (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100(8):1991–1999. https://doi.org/10.1172/JCI119730. (PMID: 10.1172/JCI1197309329962508388)
Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation. 111(25):3481–3488. https://doi.org/10.1161/CIRCULATIONAHA.105.537878. (PMID: 10.1161/CIRCULATIONAHA.105.53787815983262)
Liu W, Jiang X, Li X et al (2022) LMBR1L regulates the proliferation and migration of endothelial cells through Norrin/beta-catenin signaling. J Cell Sci 135(6). https://doi.org/10.1242/jcs.259468.
Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S (2019) A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 234(10):16812–16823. https://doi.org/10.1002/jcp.28350. (PMID: 10.1002/jcp.2835030790284)
Mensah GA, Roth GA, Fuster V (2019) The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol 74(20):2529–2532. https://doi.org/10.1016/j.jacc.2019.10.009. (PMID: 10.1016/j.jacc.2019.10.00931727292)
North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108. https://doi.org/10.1161/CIRCRESAHA.111.246876. (PMID: 10.1161/CIRCRESAHA.111.246876224999003366686)
Paneni F, Cosentino F (2012) p66 Shc as the engine of vascular aging. Curr Vasc Pharmacol 10(6):697–699. https://doi.org/10.2174/157016112803520747. (PMID: 10.2174/15701611280352074723259557)
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358. https://doi.org/10.1016/j.cell.2011.07.014. (PMID: 10.1016/j.cell.2011.07.014218021303235919)
Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11(2):230–241. https://doi.org/10.1016/j.arr.2011.12.005. (PMID: 10.1016/j.arr.2011.12.00522186033)
Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 111(10):1349–1362. https://doi.org/10.1161/CIRCRESAHA.112.268953. (PMID: 10.1161/CIRCRESAHA.112.26895323104877)
Soerensen M, Nygaard M, Dato S et al (2015) Association study of FOXO3A SNPs and aging phenotypes in Danish oldest-old individuals. Aging Cell 14(1):60–66. https://doi.org/10.1111/acel.12295. (PMID: 10.1111/acel.1229525470651)
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771. https://doi.org/10.1172/JCI39162. (PMID: 10.1172/JCI39162196523612735933)
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344-352. https://doi.org/10.1038/nature12986.
Tsai WC, Chiang WH, Wu CH et al (2020) miR-548aq-3p is a novel target of Far infrared radiation which predicts coronary artery disease endothelial colony forming cell responsiveness. Sci Rep 10(1):6805. https://doi.org/10.1038/s41598-020-63311-1. (PMID: 10.1038/s41598-020-63311-1323220027176637)
Winkelmann BR, Hager J (2000) Genetic variation in coronary heart disease and myocardial infarction: methodological overview and clinical evidence. Pharmacogenomics 1(1):73–94. https://doi.org/10.1517/14622416.1.1.73. (PMID: 10.1517/14622416.1.1.7311258599)
Yan LR, Ding HX, Shen SX, Lu XD, Yuan Y, Xu Q (2021) Pepsinogen C expression-related lncRNA/circRNA/mRNA profile and its co-mediated ceRNA network in gastric cancer. Funct Integr Genomics 21(5-6):605–618. https://doi.org/10.1007/s10142-021-00803-x. (PMID: 10.1007/s10142-021-00803-x34463892)
Yang Y, Cai Y, Wu G et al (2015) Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond) 129(8):675–685. https://doi.org/10.1042/CS20150121. (PMID: 10.1042/CS2015012126201019)
Zhong W, Deng Q, Deng X, Zhong Z, Hou J (2020) Long non-coding RNA expression profiles in peripheral blood mononuclear cells of patients with coronary artery disease. J Thorac Dis 12(11):6813–6825. https://doi.org/10.21037/jtd-20-3105. (PMID: 10.21037/jtd-20-3105332823837711381)
فهرسة مساهمة: Keywords: Coronary artery disease; Crossover analysis; Peripheral Blood mononuclear cells; RNA-seq; lncRNA
المشرفين على المادة: 0 (RNA, Long Noncoding)
0 (Biomarkers)
تواريخ الأحداث: Date Created: 20230702 Date Completed: 20230704 Latest Revision: 20230704
رمز التحديث: 20240628
DOI: 10.1007/s10142-023-01134-9
PMID: 37394483
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-7948
DOI:10.1007/s10142-023-01134-9