دورية أكاديمية

Adsorption of phosphate in aqueous solution by ash from the fruit peel of Caryocar coriaceum Wittm: adsorption characteristics and behavior.

التفاصيل البيبلوغرافية
العنوان: Adsorption of phosphate in aqueous solution by ash from the fruit peel of Caryocar coriaceum Wittm: adsorption characteristics and behavior.
المؤلفون: de Paula Filho FJ; Agrarian Sciences and Biodiversity Center, Federal University of Cariri, R. Ícaro Moreira de Sousa, 126, Crato, CE, 63130-025, Brazil. francisco.filho@ufca.edu.br.; Science and Technology Center, Federal University of Cariri, Av. Ten. Raimundo Rocha, 1639, Juazeiro Do Norte, CE, 63048-080, Brazil. francisco.filho@ufca.edu.br., Teixeira YN; Agrarian Sciences and Biodiversity Center, Federal University of Cariri, R. Ícaro Moreira de Sousa, 126, Crato, CE, 63130-025, Brazil.; Science and Technology Center, Federal University of Cariri, Av. Ten. Raimundo Rocha, 1639, Juazeiro Do Norte, CE, 63048-080, Brazil.; Biological Chemistry Department, Regional University of Cariri, R. Cel. Antonio Luis, 1161, Crato, CE, 63105-000, Brazil., Bacurau VP; Materials Engineering Department, Federal University of São Carlos, Rod. Washington Luiz, 235, São Carlos, SP, 13565-905, Brazil., Zhong Fan A; Materials Engineering Department, Federal University of São Carlos, Rod. Washington Luiz, 235, São Carlos, SP, 13565-905, Brazil., Menezes JMC; Science and Technology Center, Federal University of Cariri, Av. Ten. Raimundo Rocha, 1639, Juazeiro Do Norte, CE, 63048-080, Brazil.; Biological Chemistry Department, Regional University of Cariri, R. Cel. Antonio Luis, 1161, Crato, CE, 63105-000, Brazil., Oliveira TMBF; Science and Technology Center, Federal University of Cariri, Av. Ten. Raimundo Rocha, 1639, Juazeiro Do Norte, CE, 63048-080, Brazil., Teixeira RNP; Biological Chemistry Department, Regional University of Cariri, R. Cel. Antonio Luis, 1161, Crato, CE, 63105-000, Brazil., Coutinho HDM; Biological Chemistry Department, Regional University of Cariri, R. Cel. Antonio Luis, 1161, Crato, CE, 63105-000, Brazil., do Nascimento RF; Analytical and Physical Chemistry Department, Federal University of Ceará, Fortaleza, CE, 60356-000, Brazil.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jun; Vol. 31 (28), pp. 40117-40132. Date of Electronic Publication: 2023 Jul 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Phosphates*/chemistry , Fruit*/chemistry , Water Pollutants, Chemical*/chemistry, Adsorption ; Kinetics
مستخلص: High phosphate concentrations in natural waters are associated with eutrophication problems that negatively affect the fauna and flora of ecosystems. As an alternative solution to this problem, we evaluated the adsorptive capacity of the fruit peel ash (PPA) of Caryocar coriaceum Wittm and its efficiency in removing phosphate (PO 4 3- ) from aqueous solutions. PPA was produced under an oxidative atmosphere and calcinated at 500 °C. The XRF and EDS analyses of PPA after contact with an aqueous PO 4 3- solution showed an increase in its PO 4 3- content, thus confirming the adsorption of PO 4 3- . The Elovich and Langmuir models are the ones fitting the kinetics and the equilibrium state of the process, respectively. The highest PO 4 3- adsorption capacity was approximately 79.50 mg g -1 at 10 °C. PO 4 3- adsorption by PPA is a spontaneous, favorable, and endothermic process involving structural changes. The highest removal efficiency was 97.08% using a 100 mg.L -1 PO 4 3- solution. In sight of this, PPA has shown potential as an excellent natural bioadsorbent.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abdelhay A, Bsoul AA, Al-Othman A, Al-Ananzeh N, Jum’h I, Al-Taani AA (2018) Kinetic and thermodynamic study of phosphate removal from water by adsorption onto (Arundo donax) reeds. Adsorp Sci Technol 36:46–61. https://doi.org/10.1177/2F0263617416684347. (PMID: 10.1177/2F0263617416684347)
Al-Ghouti MA, Khan M, Nasser MS, Al-Saad K, Heng OE (2021) Recent advances and applications of municipal solid wastes bottom and fly ashes: insights into sustainable management and conservation of resources. Environ Technol Innova 21:101267. https://doi.org/10.1016/j.eti.2020.101267. (PMID: 10.1016/j.eti.2020.101267)
Al-Hashimi O, Hashim K, Loffill E, Marolt Čebašek T, Nakouti I, Faisal AAH, Al-Ansari N (2021) A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence. Migr Adsorption Model Mol 26(19):5913. https://doi.org/10.3390/molecules26195913. (PMID: 10.3390/molecules26195913)
Balsamo M, Natale FD, Erto A, Lancia A, Montagnaro F, Santoro L (2011) Cadmium adsorption by coal combustion ashes-based sorbents-Relationship between sorbent properties and adsorption capacity. J Hazard Mater 187:371–378. https://doi.org/10.1016/j.jhazmat.2011.01.029. (PMID: 10.1016/j.jhazmat.2011.01.029)
Banu HAT, Karthikeyan P, Meenakshi S (2019) Comparative studies on revival of nitrate and phosphate ions using quaternized corn husk and jackfruit peel. Bioresour Technol Rep 8:1–34. https://doi.org/10.1016/j.biteb.2019.100331. (PMID: 10.1016/j.biteb.2019.100331)
Banu HT, Meenakshi S (2017) Synthesis in a pot of quaternized resin grafted with chitosan for removal of nitrate and phosphate from aqueous solution. Int J Biol Macromol 104:1517–1527. (PMID: 10.1016/j.ijbiomac.2017.03.043)
Bawiec A (2019) Efficiency of nitrogen and phosphorus compounds removal in hydroponic wastewater treatment plant. Environ Technol 40:2062–2072. https://doi.org/10.1080/09593330.2018.1436595. (PMID: 10.1080/09593330.2018.1436595)
Bergmann PP, Machado FM (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer International Publishing, New York. (PMID: 10.1007/978-3-319-18875-1)
Biswas BK, Inoue K, Ghimire KN, Ohta S, Harada H, Ohto K, Kawakita H (2007) The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. J Colloid Interface Sci 312:214–223. https://doi.org/10.1016/j.jcis.2007.03.072. (PMID: 10.1016/j.jcis.2007.03.072)
Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Ávila HE (2017) Adsorption processes for water treatment and purification. Springer International Publishing, Cham. (PMID: 10.1007/978-3-319-58136-1)
Boparai HK, Joseph M, O’Caroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. https://doi.org/10.1016/j.jhazmat.2010.11.029. (PMID: 10.1016/j.jhazmat.2010.11.029)
Boyd CE (2015). Phosphorus. In: Water Quality. Springer, Cham. https://doi.org/10.1007/978-3-319-17446-4&#95;12.
Cao W, Dang Z, Yuan BL, Shen CH, Kan J, Xue XL (2014) Sorption kinetics of sulphate ions on quaternary ammonium-modified rice straw. J Ind Eng Chem 20:2603–2609. https://doi.org/10.1016/j.jiec.2013.10.047. (PMID: 10.1016/j.jiec.2013.10.047)
Carvalho WS, Martins DF, Gomes FR, Leite IR, Silva LG, Ruggiero R, Richter EM (2011) Phosphate adsorption on chemically modified sugarcane bagasse fibres. Biomass Bioenergy 35:3913–3919. https://doi.org/10.1016/j.biombioe.2011.06.014. (PMID: 10.1016/j.biombioe.2011.06.014)
Cheng Q, Li H, Xu Y, Cheng S, Liao Y, Deng F, Li J (2017) Study on the adsorption of nitrogen and phosphorus from biogas slurry by NaCl-modified zeolite. Plos One 12:e0176109. https://doi.org/10.1371/journal.pone.0176109. (PMID: 10.1371/journal.pone.0176109)
Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:2027–2049. https://doi.org/10.3390/su3102027. (PMID: 10.3390/su3102027)
Criado M, Fernández-Jiménez A, Palomo A (2007) Alkali activation of fly ash: effect of the SiO 2 /Na 2 O ratio: Part I: FTIR study. Micropor Mesopor Mater 106:180–191. https://doi.org/10.1016/j.micromeso.2007.02.055. (PMID: 10.1016/j.micromeso.2007.02.055)
Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog Polym Sci 33:399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001. (PMID: 10.1016/j.progpolymsci.2007.11.001)
Cui X, Li H, Yao Z, Shen Y, He Z, Yang X, Ng HY, Wang CH (2019) Removal of nitrate and phosphate by chitosan composited beads derived from crude oil refinery waste: Sorption and cost-benefit analysis. J Clean Prod 207:846–856. https://doi.org/10.1016/j.jclepro.2018.10.027. (PMID: 10.1016/j.jclepro.2018.10.027)
Dai L, Tan F, Li H, Zhu N, He M, Zhu Q, Hu G, Wang L, Zhao J (2017) Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. J Environ Manage 198:70–74. https://doi.org/10.1016/j.jenvman.2017.04.057. (PMID: 10.1016/j.jenvman.2017.04.057)
De Paula Filho FJ, Sampaio ADS, Menezes JMC, Costa CTF, Santiago MO (2019) Land uses Nitrogen and Phosphorus Estimated Fluxes in a Brazilian Semi-Arid Watershed. J Arid Environ 163:41–49. https://doi.org/10.1016/j.jaridenv.2019.01.001. (PMID: 10.1016/j.jaridenv.2019.01.001)
Dotto GL, Sellaoui L, Lima EC, Lamine AB (2016) Physicochemical and thermodynamic investigation of Ni(II) biosorption on various materials using the statistical physics modeling. J Mol Liq 220:129–135. https://doi.org/10.1016/j.molliq.2016.04.075. (PMID: 10.1016/j.molliq.2016.04.075)
Dubrovsky NM, Burow KR, Clark GM, Gronberg JM, Hamilton PA, Hitt KJ, Mueller DK, Munn MD, Nolan BT, Puckett LJ, Rupert MG, Short TM, Spahr NE, Sprague LA, Wilber WG (2010) The quality of our Nation’s waters— Nutrients in the Nation’s streams and groundwater, 1992–2004. USGS, Reston. (PMID: 10.3133/cir1350)
Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478:29–31. https://doi.org/10.1038/478029a. (PMID: 10.1038/478029a)
Faraji B, Zarabi M, Kolahchi Z (2020) Phosphorus removal from aqueous solution using modified walnut and almond wooden shell and recycling as soil amendment. Environ Monit Assess 192:373. https://doi.org/10.1007/s10661-020-08326-x. (PMID: 10.1007/s10661-020-08326-x)
Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5. (PMID: 10.1016/S0032-9592(98)00112-5)
Jóźwiak T, Filipkowska U, Szymczyk P, Kuczajowska-Zadrozna M, Mielcarek A (2017) The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO 4 , N-NO 2 and N-NO 3 . Int J Biol Macromol 104:1280–1293. https://doi.org/10.1016/j.ijbiomac.2017.07.011. (PMID: 10.1016/j.ijbiomac.2017.07.011)
Kalembkiewicz J, Galas D, Sitarz-Palczak E (2018) The physicochemical properties and composition of biomass ash and evaluating directions of its applications. Pol J Environ Stud 27(6):2593–2603. https://doi.org/10.15244/pjoes/80870. (PMID: 10.15244/pjoes/80870)
Karadag D, Koc Y, Turan M, Ozturk M (2007) A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite. J Hazard Mater 144:432–437. https://doi.org/10.1016/j.jhazmat.2006.10.055. (PMID: 10.1016/j.jhazmat.2006.10.055)
Karageorgiou K, Paschalis M, Anastasskis G (2007) Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J Hazard Mater 139:447–452. https://doi.org/10.1016/j.jhazmat.2006.02.038. (PMID: 10.1016/j.jhazmat.2006.02.038)
Kaveeshwar AR, Kumar PS, Revellame ED, Gang DD, Zappi ME, Subramaniam R (2018) Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon. J Clean Prod 193:1–13. https://doi.org/10.1016/j.jclepro.2018.05.041. (PMID: 10.1016/j.jclepro.2018.05.041)
Köse TE, Kıvanç B (2011) Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chem Eng J 178:34–39. https://doi.org/10.1016/j.cej.2011.09.129. (PMID: 10.1016/j.cej.2011.09.129)
Krishnan KA, Haridas A (2008) Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. J Hazard Mater 152:527–535. https://doi.org/10.1016/j.jhazmat.2007.07.015. (PMID: 10.1016/j.jhazmat.2007.07.015)
Kumar PS, Korving L, van Loosdrecht MCM, Witkamp GJ (2019) Adsorption as a technology to achieve ultra-low concentrations of phosphate: research gaps and economic analysis. Water Res X 4:100029. https://doi.org/10.1016/j.wroa.2019.100029.
Kumar IA, Viswanathan N (2018) Development and reuse of amine-grafted chitosan hybrid beads in the retention of nitrate and phosphate. J Chem Eng Data 63:147–158. https://doi.org/10.1021/acs.jced.7b00751. (PMID: 10.1021/acs.jced.7b00751)
Kumar P, Sudha S, Chand S, Srivastava VC (2010) Phosphate removal from aqueous solution using coir pith activated carbon. Sep Sci Technol 45:1463–1470. https://doi.org/10.1080/01496395.2010.485604. (PMID: 10.1080/01496395.2010.485604)
Lee JI, Kim JM, Yoo SC, Jho EH, Lee CG, Park SJ (2022) Restoring phosphorus from water to soil: Using calcined eggshells for P adsorption and subsequent application of the adsorbent as a P fertilizer. Chemosphere 287:132267. https://doi.org/10.1016/j.chemosphere.2021.132267. (PMID: 10.1016/j.chemosphere.2021.132267)
Li J, Li B, Huang H, Lv X, Zhao N, Guo G, Zhang D (2019) Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Sci Total Environ 687:460–469. https://doi.org/10.1016/j.scitotenv.2019.05.400. (PMID: 10.1016/j.scitotenv.2019.05.400)
Liu Y, Sheng X, Dong Y, Ma Y (2012) Removal of high-concentration phosphate by calcite: Effect of sulfate and pH. Desalination 289:66–71. https://doi.org/10.1016/j.desal.2012.01.011. (PMID: 10.1016/j.desal.2012.01.011)
Menezes JMC, Bento AMS, Silva JH, Filho FJP, Costa JGM, Coutinho HDM, Teixeira RNP (2020) Equilibrium, kinetics and thermodynamics of lead (II) adsorption in bioadsorvent composed by Caryocarcoriaceum Wittm barks. Chemosphere 261:128144. https://doi.org/10.1016/j.chemosphere.2020.128144. (PMID: 10.1016/j.chemosphere.2020.128144)
Mezenner NY, Bensmaili A (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J 147:87–96. https://doi.org/10.1016/j.cej.2008.06.024. (PMID: 10.1016/j.cej.2008.06.024)
Mor S, Chhoden K, Ravindra K (2016) Application of agrowaste rice husk ash for the removal of phosphate from the wastewater. J Clean Prod 129:673–680. https://doi.org/10.1016/j.jclepro.2016.03.088. (PMID: 10.1016/j.jclepro.2016.03.088)
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5. (PMID: 10.1016/S0003-2670(00)88444-5)
Nakanishi EY, Frías M, Martínez-Ramírez S, Santos SF, Rodríguez MS, Rodríguez O, Savastano H (2014) Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH) 2 pastes. Constr Build Mater 73:391–398. https://doi.org/10.1016/j.conbuildmat.2014.09.078. (PMID: 10.1016/j.conbuildmat.2014.09.078)
Nunes LJR, Matias JCO, Catalão JPS (2016) Biomass combustion systems: a review on the physical and chemical properties of the ashes. Renew Sustain Energy Rev 53:235–242. https://doi.org/10.1016/j.rser.2015.08.053. (PMID: 10.1016/j.rser.2015.08.053)
Parsons SA, Smith JA (2008) Phosphorus Removal and Recovery from Municipal Wastewaters. Elements 4:109–112. https://doi.org/10.2113/GSELEMENTS.4.2.109. (PMID: 10.2113/GSELEMENTS.4.2.109)
Paula Filho FJ, Marins RV, Chicharo L, Souza RB, Santos GV, Braz EMA (2020) Evaluation of water quality and trophic state in the Parnaíba River Delta, northeast Brazil. Reg Stud Mar Sci 34:101025. https://doi.org/10.1016/j.rsma.2019.101025. (PMID: 10.1016/j.rsma.2019.101025)
Pinatha Y, Polprasert C, Englande AJ Jr (2020) Product and cost perspectives of phosphorus recovery from human urine using solid waste ash and se salt addition – a case of Thailand. Sci Total Environ 713:136514. https://doi.org/10.1016/j.scitotenv.2020.136514. (PMID: 10.1016/j.scitotenv.2020.136514)
Qiao H, Mei L, Chen G, Liu H, Peng C, Ke F, Hou R, Wan X, Cai H (2019) Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes. Appl Surf Sci 483:114–122. https://doi.org/10.1016/j.apsusc.2019.03.147. (PMID: 10.1016/j.apsusc.2019.03.147)
Quirantes M, Nogales R, Romero E (2017) Sorption potential of different biomass fly ashes for the removal of diuron and 3,4-dichloroaniline from water. J Hazard Mater 331:300–308. https://doi.org/10.1016/j.jhazmat.2017.02.047. (PMID: 10.1016/j.jhazmat.2017.02.047)
Rangabhashiyam S, Anu N, Nandagopal MSG, Selvaraju N (2014) Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng 2:398–414. https://doi.org/10.1016/j.jece.2014.01.014. (PMID: 10.1016/j.jece.2014.01.014)
Reijnders L (2014) Phosphorus resources, their depletion and conservation, a review. Resour Conserv Recycl 93:32–49. https://doi.org/10.1016/j.resconrec.2014.09.006. (PMID: 10.1016/j.resconrec.2014.09.006)
Riahi K, Thayer BB, Mammou AB, Ammar AB, Jaafoura MH (2007) Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers. J Hazard Mater 170:511–519. https://doi.org/10.1016/j.jhazmat.2009.05.004. (PMID: 10.1016/j.jhazmat.2009.05.004)
Romero E, Quirantes M, Nogales R (2017) Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208:1–9. https://doi.org/10.1016/j.fuel.2017.06.133. (PMID: 10.1016/j.fuel.2017.06.133)
Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons, New York.
Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht, G, Dumont E, Fekete BM, Garnier J, Harrison JA (2010) Global river nutrient export: a scenario analysis of past and future trends. Glob Biogeochem Cycles 24 (4) n/aen/a. https://doi.org/10.1029/2009GB003587.
Shao Q, Zhang Y, Liu Z, Long L, Liu Z, Chen Y, Hu XM, Lu M, Huang LZ (2022) Phosphorus and nitrogen recovery from wastewater by ceramsite: Adsorption mechanism, plant cultivation and sustainability analysis. Sci Total Environ 805:150288. https://doi.org/10.1016/j.scitotenv.2021.150288. (PMID: 10.1016/j.scitotenv.2021.150288)
Silva MI, Gonçalves AML, Lopes WA, Lima MTV, Costa CTF, Paris M, Firmino PRA, De Paula Filho FJ (2021) Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques. J Hydrol 598:126346. https://doi.org/10.1016/j.jhydrol.2021.126346. (PMID: 10.1016/j.jhydrol.2021.126346)
Simsek EB, Beker U (2014) Equilibrium arsenic adsorption onto metallic oxides: Isotherm models, error analysis and removal mechanism. Korean J Chem Eng 31:2057–2069. https://doi.org/10.1007/s11814-014-0176-2. (PMID: 10.1007/s11814-014-0176-2)
Sözbir M, Simsek EB, Mert HH, Kekevi B, Mert MS, Mert EH (2023) Renewable terpene-based highly porous polymer monoliths for the effective removal of persistent pharmaceuticals of tetracycline and ibuprofen. Micropor Mesopor Mat 354:112509. https://doi.org/10.1016/j.micromeso.2023.112509. (PMID: 10.1016/j.micromeso.2023.112509)
Teixeira YN, Melo RPF, Fernandes MR, Carmo SKS, Barros Neto EL (2022) Malachite green removal using ionic flocculation. Water Pract Technol 17:1113. https://doi.org/10.2166/wpt.2022.054. (PMID: 10.2166/wpt.2022.054)
Teixeira YN, Menezes JMC, Teixeira RNP, Paula Filho FJ, Oliveira TMBF (2023a) Eco-friendly anionic surfactant for the removal of methyl red from aqueous matrices. Textiles 3:52–65. https://doi.org/10.3390/textiles3010005. (PMID: 10.3390/textiles3010005)
Teixeira YN, Paula Filho FJ, Bacurau VP, Menezes JMC, Silva DB, Santos JQ, Teixeira RNP, Nunes JVS (2023b) Removal of cationic dyes from a synthetic effluent using a calcium surfactant. Water Pract Technol 18:647–664. https://doi.org/10.2166/wpt.2023.021. (PMID: 10.2166/wpt.2023.021)
Teubner Junior FJ, Lima ATM, Barroso GF (2018) Emission rates of nitrogen and phosphorus in a tropical coastal river basin: a strategic management approach. Environ Monit Assess 190:747. https://doi.org/10.1007/s10661-018-7101-9. (PMID: 10.1007/s10661-018-7101-9)
Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144:386–395. https://doi.org/10.1016/j.jhazmat.2006.10.046. (PMID: 10.1016/j.jhazmat.2006.10.046)
Van Eijk RJ, Obernberger I, Supancic K (2019) Options for increased utilization of ash from biomass combustion and co-firing. IEA bioenergy task. https://www.ieabioenergy.com/blog/publications/options-for-increased-use-of-ash-from-biomass-combustion-and-co-firing/ . Retrieved on 13 February 2023.
Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part. 1. Phase-mineral and chemical composition and classification. Fuel 105:40–76. https://doi.org/10.1016/j.fuel.2012.09.041. (PMID: 10.1016/j.fuel.2012.09.041)
Vikrant K, Kim KH, Ok YS, Tsang DCW, Tsang YF, Giri BS, Singh RS (2018) Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci Total Environ 616–617:1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193. (PMID: 10.1016/j.scitotenv.2017.10.193)
Wang X, Liu Z, Liu J, Huo M, Huo H, Yang W (2015) Removing phosphorus from aqueous solutions using lanthanum modified pine needles. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0142700. (PMID: 10.1371/journal.pone.0142700)
Wu F, Tseng R, Juang R (2009) Characteristic of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373. https://doi.org/10.1016/j.cej.2009.01.014. (PMID: 10.1016/j.cej.2009.01.014)
Xu X, Gao B, Wang W, Yue Q, Wang Y, Ni S (2009) Adsorption of phosphate from aqueous solutions onto modified wheat residue: characteristics, kinetic and column studies. Colloids Surf B 70:46–52. https://doi.org/10.1016/j.colsurfb.2008.12.006. (PMID: 10.1016/j.colsurfb.2008.12.006)
Xu X, Gao Y, Gao B, Tan X, Zhao YQ, Yue Q, Wang Y (2011) Characteristics of diethylenetriamine-crosslinked cotton stalk/wheat stalk and their biosorption capacities for phosphate. J Hazard Mater 192:1690–1696. https://doi.org/10.1016/j.jhazmat.2011.07.009. (PMID: 10.1016/j.jhazmat.2011.07.009)
Yadav D, Kapur M, Kumar P, Mondal MK (2015) Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Process Saf Environ Prot 94:402–409. https://doi.org/10.1016/j.psep.2014.09.005. (PMID: 10.1016/j.psep.2014.09.005)
Yan J, Kirk DW, Jia CQ, Liu X (2007) Sorption of aqueous phosphorus onto bituminous and lignitous coal ashes. J Hazard Mater 148:395–401. https://doi.org/10.1016/j.jhazmat.2007.02.055. (PMID: 10.1016/j.jhazmat.2007.02.055)
Zhao T, Feng T (2016) Application of modified chitosan microspheres for nitrate and phosphate adsorption from aqueous solution. RSC Adv 6:90878–90886. https://doi.org/10.1039/C6RA17474D. (PMID: 10.1039/C6RA17474D)
معلومات مُعتمدة: BP3-0139-00276.01.00/18 Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico; BP4-0172-00080.01.00/20 Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico; BP5-00197-00133.01.00/22 Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Adsorption; Ashes; Bioadsorbents; Isotherms; Kinetics; Phosphate
المشرفين على المادة: 0 (Phosphates)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20230704 Date Completed: 20240620 Latest Revision: 20240620
رمز التحديث: 20240620
DOI: 10.1007/s11356-023-28292-4
PMID: 37402045
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-023-28292-4