دورية أكاديمية

Optimal slice thickness for improved accuracy of quantitative analysis of fluorescent cell and microsphere distribution in cryo-images.

التفاصيل البيبلوغرافية
العنوان: Optimal slice thickness for improved accuracy of quantitative analysis of fluorescent cell and microsphere distribution in cryo-images.
المؤلفون: Wuttisarnwattana P; Biomedical Engineering Institute, Department of Computer Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand. patiwet@eng.cmu.ac.th., Eck BL; Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA., Gargesha M; BioInVision Inc., Mayfield Village, OH, 44143, USA., Wilson DL; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA. david.wilson@case.edu.
المصدر: Scientific reports [Sci Rep] 2023 Jul 05; Vol. 13 (1), pp. 10907. Date of Electronic Publication: 2023 Jul 05.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Heart* , Tomography, X-Ray Computed*/methods, Mice ; Animals ; Swine ; Microspheres ; Reproducibility of Results ; Tissue Distribution
مستخلص: Cryo-imaging has been effectively used to study the biodistribution of fluorescent cells or microspheres in animal models. Sequential slice-by-slice fluorescent imaging enables detection of fluorescent cells or microspheres for corresponding quantification of their distribution in tissue. However, if slices are too thin, there will be data overload and excessive scan times. If slices are too thick, then cells can be missed. In this study, we developed a model for detection of fluorescent cells or microspheres to aid optimal slice thickness determination. Key factors include: section thickness (X), fluorescent cell intensity (I fluo ), effective tissue attenuation coefficient (μ T ), and a detection threshold (T). The model suggests an optimal slice thickness value that provides near-ideal sensitivity while minimizing scan time. The model also suggests a correction method to compensate for missed cells in the case that image data were acquired with overly large slice thickness. This approach allows cryo-imaging operators to use larger slice thickness to expedite the scan time without significant loss of cell count. We validated the model using real data from two independent studies: fluorescent microspheres in a pig heart and fluorescently labeled stem cells in a mouse model. Results show that slice thickness and detection sensitivity relationships from simulations and real data were well-matched with 99% correlation and 2% root-mean-square (RMS) error. We also discussed the detection characteristics in situations where key assumptions of the model were not met such as fluorescence intensity variation and spatial distribution. Finally, we show that with proper settings, cryo-imaging can provide accurate quantification of the fluorescent cell biodistribution with remarkably high recovery ratios (number of detections/delivery). As cryo-imaging technology has been used in many biological applications, our optimal slice thickness determination and data correction methods can play a crucial role in further advancing its usability and reliability.
(© 2023. The Author(s).)
References: Int J Cancer. 2013 Apr 1;132(7):1624-32. (PMID: 22987116)
Ann Biomed Eng. 2009 Aug;37(8):1613-28. (PMID: 19513848)
Magn Reson Imaging. 2022 Feb;86:37-45. (PMID: 34801672)
Ann Biomed Eng. 2020 Jun;48(6):1702-1711. (PMID: 32103369)
Proc SPIE Int Soc Opt Eng. 2016 Feb-Mar;9788:. (PMID: 29568147)
Cancer Res. 2011 Sep 1;71(17):5932-40. (PMID: 21862632)
Mol Imaging Biol. 2012 Oct;14(5):572-83. (PMID: 22125093)
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1408-11. (PMID: 19964525)
Stem Cells. 2015 Feb;33(2):601-14. (PMID: 25336340)
Sci Rep. 2021 Sep 1;11(1):17527. (PMID: 34471169)
J Digit Imaging. 2023 Apr;36(2):588-602. (PMID: 36441277)
Stem Cells. 2021 Nov;39(11):1506-1519. (PMID: 34255899)
J Mol Cell Cardiol. 2014 Nov;76:196-204. (PMID: 25179912)
Sci Rep. 2023 Jan 30;13(1):1698. (PMID: 36717650)
Med Biol Eng Comput. 2008 Jun;46(6):589-96. (PMID: 18365263)
Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2043-52. (PMID: 11045936)
Circ Res. 2013 Apr 26;112(9):e88-97. (PMID: 23513055)
Nat Commun. 2015 Aug 12;6:7984. (PMID: 26264658)
Phys Med Biol. 2016 Mar 21;61(6):2407-31. (PMID: 26943749)
PLoS One. 2013 Jul 09;8(7):e67626. (PMID: 23874433)
Opt Express. 2010 Oct 11;18(21):22324-38. (PMID: 20941133)
IEEE Trans Med Imaging. 2016 Mar;35(3):819-29. (PMID: 26552080)
IEEE Trans Med Imaging. 2013 Jan;32(1):56-72. (PMID: 23193311)
Anat Rec (Hoboken). 2009 Mar;292(3):342-51. (PMID: 19248166)
Microvasc Res. 2015 Jul;100:59-70. (PMID: 25963318)
Int J Biomed Imaging. 2018 Apr 1;2018:9780349. (PMID: 29805438)
Med Biol Eng Comput. 2010 Aug;48(8):735-44. (PMID: 20574721)
J Biomech. 2013 Jan 18;46(2):229-39. (PMID: 23237670)
معلومات مُعتمدة: R42 CA124270 United States CA NCI NIH HHS; T32 EB007509 United States EB NIBIB NIH HHS; R01 EB028635 United States EB NIBIB NIH HHS; R43 GM145205 United States GM NIGMS NIH HHS; T32EB007509 United States NH NIH HHS
تواريخ الأحداث: Date Created: 20230705 Date Completed: 20230707 Latest Revision: 20230718
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10322852
DOI: 10.1038/s41598-023-37927-y
PMID: 37407807
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-023-37927-y