دورية أكاديمية

Integrated strategy for the screening of cyclooxygenase-2 inhibitors from triterpenoid saponins in Clematis tangutica.

التفاصيل البيبلوغرافية
العنوان: Integrated strategy for the screening of cyclooxygenase-2 inhibitors from triterpenoid saponins in Clematis tangutica.
المؤلفون: Wei Y; Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, China.; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China., Chen T; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China., Wang S; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China., Shen C; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China., Song Z; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China., Li A; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China., Li H; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China., Li Y; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
المصدر: Phytochemical analysis : PCA [Phytochem Anal] 2023 Aug; Vol. 34 (6), pp. 692-704. Date of Electronic Publication: 2023 Jul 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 9200492 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1565 (Electronic) Linking ISSN: 09580344 NLM ISO Abbreviation: Phytochem Anal Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, Sussex, UK : Wiley, c1990-
مواضيع طبية MeSH: Clematis*/chemistry , Saponins*/chemistry , Triterpenes*/analysis, Cyclooxygenase 2 Inhibitors/pharmacology ; Cyclooxygenase 2 ; Molecular Docking Simulation ; Chromatography, High Pressure Liquid
مستخلص: Introduction: Screening of novel cyclooxygenase-2 (COX-2) inhibitors from complex natural products is not an easy task.
Objectives: To establish an efficient and feasible strategy for screening COX-2 inhibitors from triterpenoid saponins (TPSs) in Clematis tangutica.
Methods: Taking TPSs in C. tangutica as example, an optimized macroporous resin (MR) method was established for the enrichment of TPSs. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) was performed to establish the phytochemical profiling of TPSs. Molecular docking was performed to predict the ligand-target interactions and discover the active substances. Chemometric techniques were performed to visualize the structure-effect relationships. High-speed countercurrent chromatography and preparative HPLC were performed to prepare the targets. In vitro activity experiment of COX-2 was performed to verify the virtual screening results.
Results: TPSs in C. tangutica were well enriched with the recovery rate of (80.22 ± 2.37)%. Thirty-four kinds of TPSs of oleanane type were deduced by HPLC-QTOFMS. Five TPSs of clematangoside C, clematangoside D, clematangoticoside J, hederoside H 1 , and hederasaponin B showed stronger binding abilities with COX-2. The structure with more sugar groups at C-28 may be more conducive to the combination with COX-2. Targets were prepared with purities all above 98%. The IC 50 values of target TPSs were 6.03 ± 0.24, 12.44 ± 0.15, 9.36 ± 0.19, 4.78 ± 0.13, and 2.59 ± 0.11 μmol/L, respectively.
Conclusion: The integrated strategy using MR, HPLC-QTOFMS, molecular docking, chemometrics, target preparation, and in vitro verification was feasible for rapidly screening COX-2 inhibitors from TPSs in C. tangutica.
(© 2023 John Wiley & Sons Ltd.)
References: Beura S, Chetti P. Identification of potential human COX-2 inhibitors using computational modeling and molecular dynamics simulations. J Mol Struct. 2020;1216:128271. doi:10.1016/j.molstruc.2020.128271.
Hinz B, Brune K. Cyclooxygenase-2-10 years later. J Pharmacol Exp Ther. 2022;300(2):367-375. doi:10.1124/jpet.300.2.367.
Cipollone F. Cox-2 polymorphisms and cardiovascular disease: elucidation the hidden side of the disease. Atherosclerosis. 2009;207(2):348-349. doi:10.1016/j.atherosclerossis.2009.08.022.
Zhang ZB, Chinnathambi A, Alharbi SA, Bai L. Copper oxide nanoparticles from Rabdosia rubescens attenuates the complete Freund's adjuvant (CFA) induced rheumatoid arthritis in rats via suppressing the inflammatory proteins COX-2/PGE2. Arab J Chem. 2020;13(6):5639-5650. doi:10.1016/j.arabjc.2020.04.005.
Komers R, Tian W, Lindsley JN, Oyama TT, Cohen DM, Anderson S. Effects of cyclooxygenase-2 (COX-2) inhibition on plasma and renal renin in diabetes. J Lab Clin Med. 2002;140(5):351-357. doi:10.1067/mlc.2002.128551.
Khan HY, Parveen S, Yousuf I, Tabassum S, Arjmand F. Metal complexes of NSAIDs as potent anti-tumor chemotherapeutics: mechanistic insights into cytotoxic activity via multiple pathways primarily by inhibition of COX-1 and COX-2 enzymes. Coord Chem Rev. 2022;453:214316. doi:10.1016/j.ccr.2021.214316.
Li L, Kong J, Yao CH, Liu XF, Liu JH. Rapid identification of urokinase plasminogen activator inhibitors from traditional Chinese medicines based on ultrafiltration, LC-MS and in silico docking. J Pharm Biomed Anal. 2019;164:241-248. doi:10.1016/j.jpba.2018.10.036.
Yuan H, Bai XL, Hu YK, Fan WQ, Ayeni EA, Liao X. Ligand fishing of monoamine oxidase B inhibitors from Platycodon grandiflorus (Jacq.) A.DC. roots by the enzyme functionalised magnetic nanoparticles. Phytochem Anal. 2022;34(1):67-75. doi:10.1002/pca.3180.
Feng HX, Chen GL, Zhang YL, Guo MQ. Potential multiple bioactive components from Sinopodophyllum hexandrum explored by affinity ultrafiltration with four drug targets. Phytomedicine Plus. 2022;2(1):100219. doi:10.1016/j.phyplu.2022.100219.
Zhuo RJ, Liu H, Liu NN, Wang Y. Ligand fishing: a remarkable strategy for discovering bioactive compounds from complex mixture of natural products. Molecules. 2016;21(11):1516. doi:10.3390/molecules21111516.
Ling Y, Zhang Q. Structural characterisation and screening of triterpene saponins in the bark of Ilex rotunda using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry. Phytochem Anal. 2020;32(3):395-403. doi:10.1002/pca.2986.
Pollini L, Juan-García A, Blasi F, Mañes J, Gossignani L, Juan C. Assessing bioaccessibility and bioavailability in vitro of phenolic compounds from freeze-dried apple pomace by LC-Q-TOF-MS. Food Biosci. 2022;48:101799. doi:10.1016/j.fbio.2022.101799.
Yuan JH, Cai ZC, Chen CH, et al. A study for quality evaluation of Taxilli Herba from different hosts based on fingerprint-activity relationship modelling and multivariate statistical analysis. Arab J Chem. 2022;15(7):103933. doi:10.1016/j.arabjc.2022.103933.
Poletto P, Alvarez-Rivera G, Torres TMS, Mendiola JA, Ibañez E, Cifuentes A. Compressed fluids and phytochemical profiling tools to obtain and characterize antiviral and anti-inflammatory compounds from natural sources. Trends Anal Chem. 2020;129:115942. doi:10.1016/j.trac.2020.115942.
Nikolaev EN, Somogyi Á, Smith DL, et al. Implementation of low-energy surface-induced dissociation (eV SID) and high-energy collision-induced dissociation (keV CID) in a linear sector-TOF hybrid tandem mass spectrometer. Int J Mass Spectrom. 2001;212(1-3):535-551. doi:10.1016/S1387-3806(01)00462-6.
Wang H, Chen HL, Geng J, et al. Quantitative analysis of dextran in rat plasma using Q-Orbitrap mass spectrometry based on all ion fragmentation strategy. J Chromatogr B. 2018;1095:24-31. doi:10.1016/j.jchromb.2018.07.015.
Li YD, Frenz CM, Chen MH, et al. Primary virtual and in vitro bioassay screening of natural inhibitors from flavonoids against COX-2. Chin J Nat Med. 2011;9:156-160. doi:10.3724/sp.j.1009.2011.00156.
Li YJ, He FQ, Zhao HH, Li Y, Chen J. Screening and identification of acetylcholinesterase inhibitors from Terminalia chebula fruits by immobilized enzyme on cellulose filter paper coupled with ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and molecular docking. J Chromatogr A. 2022;1663:462784. doi:10.1016/j.chroma.2021.462784.
Celik I, Erol M, Arpaci OT, Senol FS, Orhan IE. Evaluation of activity of some 2,5-disubstituted benzoxazole derivatives against acetylcholinesterase, butyrylcholinesterase and tyrosinase: ADME prediction, DFT and comparative molecular docking studies. Polycycl Aromat Comp. 2022;42(2):412-423. doi:10.1080/10406638.2020.1737827.
Arroo RRJ, Sari S, Barut B, Özel A, Ruparelia KC, Söhretoglu D. Flavones as tyrosinase inhibitors: kinetic studies in vitro and in silico. Phytochem Anal. 2020;31(3):314-321. doi:10.1002/pca.2897.
Koppen V, Looveren CV, Francois I, Cuyckens F. Selective drug metabolite trace analysis by very high-volume injections and heartcut two-dimensional (2D)-ultrahigh performance liquid chromatography (UHPLC). J Chromatogr A. 2019;1601:164-170. doi:10.1016/j.chroma.2019.04.064.
Liu D, Han Y, Zhou H, et al. Offline preparative three-dimensional HPLC for systematic and efficient purification of alkaloids from Gelsemium elegans Benth. J Chromatogr A. 2021;1640:461935. doi:10.1016/j.chroma.2021.461935.
Yang D, Li MM, Wang WJ, et al. Separation and purification of anthocyanins from Roselle by macroporous resins. LWT. 2022;161:113371. doi:10.1016/j.lwt.2022.113371.
Liu F, Ma N, Xia FB, et al. Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography. J Ginseng Res. 2019;43(1):105-115. doi:10.1016/j.jgr.2017.09.003.
Liu JJ, Li Q, Liu R, Yin YD, Chen XH, Bi KS. Enrichment and purification of six Aconitum alkaloids from Aconiti kusnezoffii radix by macroporous resins and quantification by HPLC-MS. J Chromatogr B. 2014;960:174-181. doi:10.1016/j.jchromb.2014.04.034.
Chen T, Yang X, Wang S, et al. Separation of five flavone glycosides including two groups with similar polarities from Dracocephalum tanguticum by combination of three high-speed counter-current chromatography modes. J Sep Sci. 2021;45(2):468-476. doi:10.1002/jssc.202100537.
Institute of Botany, Chinese Academy of Sciences. Flora of China. Science Press; 2004.
Pharmacopoeia Commission of the People's Republic of China. Standards Issued by the Ministry of Health of the People's Republic of China. Tibetan Medicine. People's Health Publishing House; 1995:86p.
Zhao M, DaWa ZM, Guo DL, et al. Cytotoxic triterpenoid saponins from Clematis tangutia. Phytochemistry. 2016;130:228-237. doi:10.1016/j.phytochem.2016.05.009.
Zhang W, Yao MN, Tang HF, et al. Triterpenoid saponins with anti-myocardial ischemia activity from the whole plants of Clematis tangutica. Planta Med. 2013;79(8):673-679. doi:10.1055/s-0032-1328541.
Zhong HM, Chen CX, Tian X, Chui YX, Chen YZ. Triterpenoid saponins from Clematis tangutica. Planta Med. 2001;67(5):484-488. doi:10.1055/s-2001-15803.
Du ZZ, Zhu N, Wang ZR, Mu N, Shen YM. Two new antifungal saponins from Tibetan herbal medicine Clematis tangutica. Planta Med. 2003;69(6):547-551. doi:10.1055/s-2003-40652.
Zhang W, Wang XY, Tang HF, et al. Triterpenoid saponins from Clematis tangutica and their cardioprotective activities. Fitoterapia. 2013;84:326-331. doi:10.1016/j.fitote.2012.12.011.
Yang NN, Zhang YF, Zhang HT, et al. The in vitro and in vivo anti-inflammatory activities of triterpene saponins from Clematis florida. Nat Prod Res. 2021;35(24):6180-6183. doi:10.1080/14786419.2020.1833203.
Wei YF, Chen T, Wang S, et al. Separation of a new triterpenoid saponin together with six known ones from Clematis tangutica (Maxim.) Korsh and evaluation of their cytotoxic activities. Nat Prod Res. 2023;37(3):375-382. doi:10.1080/14786419.2021.1984468.
Zhou YF, Wang LL, Chen LC, Liu TB, Sha RY, Mao JW. Enrichment and separation of steroidal saponins from the fibrous roots of Ophiopogon japonicus using macroporous adsorption resins. RSC Adv. 2019;9(12):6689-6698. doi:10.1039/C8RA09319A.
Uciechowska-Kaczmarzyk U, Beauchene ICD, Samsonov SA. Docking software performance in protein-glycosaminoglycan systems. J Mol Graph Model. 2019;90:42-50. doi:10.1016/j.jmgm.2019.04.001.
Wei YF. Study on the Anti-Gastric Cancer Pharmacodynamics and Molecular Mechanism of Saponins from Clematis tangutica (Maxim.) Korsh. PhD Thesis. University of Chinese Academy of Sciences; 2022.
Erpel F, Camilo C, Mateos R, Pérez-Correa JR. A macroporous resin purification process to obtain food-grade phlorotannin-rich extracts with α-glucosidase inhibitory activity from Chilean brown seaweeds: an UHPLC-MSn profiling. Food Chem. 2023;402(15):134472. doi:10.1016/j.foodchem.2022.134472.
Zhao HQ, Lai CJS, Zhang MM, et al. An improved 2D-HPLC-UF-ESI-TOF/MS approach for enrichment and comprehensive characterization of minor neuraminidase inhibitors from Flos Lonicerae Japonicae. J Pharm Biomed Anal. 2019;175:112758. doi:10.1016/j.jpba.2019.07.006.
Liu SP, Cui M, Liu ZQ, Song FR. Structural analysis of saponins from medicinal herbs using electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15(2):133-141. doi:10.1016/j.jasms.2003.09.013.
Guo YC, Ouyang H, He MZ, et al. Identification of saponins in rhizomes of Anemone davidii by UPLC/Q-TOF-MS/MS. Chin Tradi Herbal Drugs. 2014;45(10):1378-1387. doi:10.7501/j.issn.0253-2670.2014.10.006.
Mikołajczyk-Bator K, Błaszczyk A, Czyżniejewski M, Kachlicki P. Characterization and identification of triterpene saponins in the roots of red beets (Beta vulgaris L.) using two HPLC-MS systems. Food Chem. 2016;192:979-990. doi:10.1016/j.foodchem.2015.07.111.
Lazo-Vélez MA, Guajardo-Flores D, Mata-Ramírez D, Gutiérrez-Uribe JA, Serna-Saldivar SO. Characterization and quantitation of triterpenoid saponins in raw and sprouted Chenopodium berlandieri spp. (Huauzontle) grains subjected to germination with or without selenium stress conditions. J Food Sci. 2016;81(1):21-26. doi:10.1111/1750-3841.13174.
Sinitsyn MY, Aksenov AV, Taranchenko MV, et al. Structural characterization of triterpene saponins from Manchurian aralia by high resolution liquid chromatography-mass spectrometry. J Anal Chem. 2019;74(11):1113-1121. doi:10.1134/S1061934819110108.
Yang LJ, Xie YY, Li ZF, et al. Analysis on chemical constituents in Hedera nepalensis by UPLC/Q-TOF-MS/MS. Chin Tradit Herb Drug. 2016;47(4):566-572. doi:10.7501/j.issn.0253-2670.2016.04.007.
Grishkovets VI, Loloiko AA, Shashkov AS, Chirva VY. Triterpene glycosides of Hedera taurica. VI. Structures of hederosides G, H1, H2, and I from the berries of Crimean ivy. Chem Nat Compd. 1990;26(6):663-666. doi:10.1007/BF00630077.
Kumekawa Y, Itokawa H, Fujita M. The study on the constituents of Clematis and Akebia sp. III. The study on the structures of Akebosides isolated from the stem of Akebia quinata Decne. Chem Pharm Bull. 1974;22(10):2294-2300. doi:10.1248/cpb.22.2294.
Panov DA, Grishkovets VI, Kachala VV, Shashkov AS. Triterpene glycosides from Kalopanax septemlobum. VI. Glycosides from leaves of Kalopanax septemlobum var. typicum introduced to crimea. Chem Nat Compd. 2006;42(1):49-54. doi:10.1007/s10600-006-0034-5.
Miyakoshi M, Shirasuna K, Hirai Y, et al. Triterpenoid saponins of Acanthopanax nipponicus leaves. J Nat Prod. 1999;62(3):445-448. doi:10.1021/np9804334.
Shashkov AA, Grishkovets VI, Tsvetkov OY, Chirva VY. Triterpene glycosides of Hedera taurica. XI. Structures of taurosides St-G1, St-H1 and St-H2 from the stems of Crimean ivy. Chem Nat Compd. 1993;29(4):502-508. doi:10.1007/BF00630578.
Yan LH, Xu LZ, Lin J, Yang SL. Triterpenoid saponins from the stems of Clematis parviloba. J Asian Nat Prod Res. 2009;11(4):332-338. doi:10.1080/10286020902727348.
Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 2011;32(10):2149-2159. doi:10.1002/jcc.21797.
Berendsen HJC, Grigera JR, Straatsma TPJ. The missing term in effective pair potentials. J Phys Chem. 2001;91(24):6269-6271. doi:10.1021/j100308a038.
Rudolf K, Ferreira MMC. Comparative chemometric and QSAR/SAR study of structurally unrelated substrates of a MATE efflux pump VmrA from V. parahaemolyticus: prediction of multidrug resistance. QSAR Comb Sci. 2008;27(3):314-329. doi:10.1012/qsar.200630164.
Li RL. Structure-Activity Relationship of Drugs. China Medical Science and Technology Press; 2004.
Nhu NQ, Fukushima EO, Muranaka T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J Nat Med. 2017;71(1):50-58. doi:10.1007/s11418-016-1026-9.
Ren L, Liu YX, Lv D, et al. Facile synthesis of the naturally cytotoxic triterpenoid saponin Patrinia-Glycoside B-II and its conformer. Molecules. 2013;18(12):15193-15206. doi:10.3390/molecules181215193.
معلومات مُعتمدة: 82174052 National Natural Science Foundation of China; 2020-ZJ-T02 Innovation Platform Construction Project of Qinghai Province; 2020425 Youth Innovation Promotion Association of the Chinese Academy of Sciences; 23JRRG0003 Natural Science Foundation of Gansu Province; KYQD2023003 Doctoral Research Initiation Fund of Hexi University; 22YF7GG127 Science and Technology Program of Gansu Province; 23JRRG0002 Key Project of Gansu Natural Science Foundation; 2019A-01 Project of Higher Education Industry Support and Guidance of Gansu Province
فهرسة مساهمة: Keywords: COX-2 inhibitors; HPLC-QTOFMS; chemometrics; molecule docking; triterpenoid saponins
المشرفين على المادة: 0 (Cyclooxygenase 2 Inhibitors)
0 (Saponins)
EC 1.14.99.1 (Cyclooxygenase 2)
0 (Triterpenes)
تواريخ الأحداث: Date Created: 20230711 Date Completed: 20230802 Latest Revision: 20230802
رمز التحديث: 20240628
DOI: 10.1002/pca.3260
PMID: 37431174
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1565
DOI:10.1002/pca.3260