دورية أكاديمية

Pharmacological profile, phase I metabolism, and excretion time profile of the new synthetic cathinone 3,4-Pr-PipVP.

التفاصيل البيبلوغرافية
العنوان: Pharmacological profile, phase I metabolism, and excretion time profile of the new synthetic cathinone 3,4-Pr-PipVP.
المؤلفون: Schwelm HM; Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.; Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany., Persson M; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden., Pulver B; Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.; Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany.; State Bureau of Criminal Investigation Schleswig-Holstein, Forensic Science Institute, Kiel, Germany., Huß MV; Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany., Gréen H; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.; Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden., Auwärter V; Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
المصدر: Drug testing and analysis [Drug Test Anal] 2024 Mar; Vol. 16 (3), pp. 277-288. Date of Electronic Publication: 2023 Jul 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: England NLM ID: 101483449 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1942-7611 (Electronic) Linking ISSN: 19427603 NLM ISO Abbreviation: Drug Test Anal Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, UK : John Wiley & Sons
مواضيع طبية MeSH: Synthetic Cathinone* , Body Fluids*, Humans ; Microsomes, Liver/metabolism ; Biomarkers/metabolism ; Piperidines/metabolism
مستخلص: 1-(2,3-Dihydro-1H-inden-5-yl)-2-(piperidin-1-yl)pentan-1-one (3,4-Pr-PipVP), a novel synthetic cathinone (SCat), was first identified in 2022 in Germany. The product was marketed as 1-(bicyclo[4.2.0]octa-1,3,5-trien-3-yl)-2-(pyrrolidin-1-yl)pentan-1-one (3,4-EtPV), a substance not covered by the German New Psychoactive Substances Act (NpSG). Although originally intended to be an exploratory new synthetic cathinone containing the novel bicyclo[4.2.0]octatrienyl function, the compound was subsequently confirmed to contain an indanyl ring system scheduled under generic legislation like the NpSG. However, it is one of only a few marketed SCats carrying a piperidine ring. Inhibition experiments involving norepinephrine, dopamine, and serotonin transporters showed that 3,4-Pr-PipVP was a low potency blocker at all three monoamine transporters compared to related substances such as MDPV. Additionally, pharmacokinetic data were collected from pooled human liver microsomes incubations and from the analysis of authentic urine samples received after oral administration of 5 mg 3,4-Pr-PipVP hydrochloride. Phase I metabolites were tentatively identified in vitro and in vivo using liquid chromatography-time-of-flight mass spectrometry. Main metabolites were formed by metabolic reduction of the carbonyl function with and without additional hydroxylations at the propylene bridge of the molecule. Keto-reduced H 2 -3,4-Pr-PipVP and H 2 -piperidine-OH-3,4-Pr-PipVP as well as aryl-OH-3,4-Pr-PipVP, and indanyl-OH-piperidine-OH-3,4-Pr-PipVP are suggested as most suitable biomarkers for the detection of 3,4-Pr-PipVP since they were detected for much longer than the parent compound. 3,4-Pr-PipVP could be detected for up to 21 h whereas its metabolites were detectable for up to about 4 days.
(© 2023 The Authors. Drug Testing and Analysis published by John Wiley & Sons Ltd.)
References: European Monitoring Centre for Drugs and Drug Addiction. European drug report 2022: trends and developments. Publications Office of the European Union; 2022. Accessed February 8, 2023. https://data.europa.eu/doi/10.2810/75644.
Kuropka P, Zawadzki M, Szpot P. A review of synthetic cathinones emerging in recent years (2019-2022). Forensic Toxicol. 2023;41(1):25-46. doi:10.1007/s11419-022-00639-5.
EMCDDA. European database for new drugs (EDND). 2023. Accessed February 8, 2023. https://ednd2.emcdda.europa.eu.
La Maida N, Di Trana A, Giorgetti R, et al. A review of synthetic sathinone-related fatalities from 2017 to 2020. Ther Drug Monit. 2021;43(1):52-68. doi:10.1097/ftd.0000000000000808.
Zaami S, Giorgetti R, Pichini S, Pantano F, Marinelli E, Busardò FP. Synthetic cathinones related fatalities: an update. Eur Rev Med Pharmacol Sci. 2018;22(1):268-274. doi:10.26355/eurrev_201801_14129.
Pieprzyca E, Skowronek R, Czekaj P. Toxicological analysis of intoxications with synthetic cathinones. J Anal Toxicol. 2021;46(7):705-711. doi:10.1093/jat/bkab102.
Simmler LD. Monoamine transporter and receptor interaction profiles of synthetic cathinones. In: Zawilska JB, ed. Synthetic Cathinones. 1st ed. Springer; 2018:97-116. doi:10.1007/978-3-319-78707-7.
Baumann MH, Walters HM, Niello M, Sitte HH. Neuropharmacology of synthetic cathinones. Handb Exp Pharmacol. 2018;252:113-114. doi:10.1007/164_2018_178.
Eshleman AJ, Wolfrum KM, Reed JF, et al. Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J Pharmacol Exp Ther. 2017;360(1):33-47. doi:10.1124/jpet.116.236349.
Simmler LD, Rickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology. 2014;79:152-160. doi:10.1016/j.neuropharm.2013.11.008.
Rickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol. 2015;25(3):365-376. doi:10.1016/j.euroneuro.2014.12.012.
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol. 2020;94(4):1085-1133. doi:10.1007/s00204-020-02693-7.
Persson M, Vikingsson S, Kronstrand R, Gréen H. Characterization of neurotransmitter inhibition for seven cathinones by a proprietary fluorescent dye method. Drug Test Anal. 2023. Accepted July 5, 2023.
Baumann MH, Glennon RA, Wiley JL. Neuropharmacology of new psychoactive substances (NPS). 1st ed. Springer; 2017. doi:10.1007/978-3-319-52444-3.
Glennon RA, Dukat M. Synthetic Cathinones: a brief overview of overviews with applications to the forensic sciences. Ann Forensic Res Anal 2017;4(2):1040. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168209/ Accessed February 8, 2023.
Kolanos R, Sakloth F, Jain AD, Partilla JS, Baumann MH, Glennon RA. Structural modification of the designer stimulant α-pyrrolidinovalerophenone (α-PVP) influences potency at dopamine transporters. ACS Chem Nerosci. 2015;6(10):1726-1731. doi:10.1021/acschemneuro.5b00160.
Kolanos R, Solis E Jr, Sakloth F, De Felice LJ, Glennon RA. “deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem Nerosci. 2013;4(12):1524-1529. doi:10.1021/cn4001236.
Glennon RA, Dukat M. Structure-activity relationships of synthetic cathinones. Curr Top Behav Neurosci. 2017;32:19-47. doi:10.1007/7854_2016_41.
Meltzer PC, Butler D, Deschamps JR, Madras BK. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem. 2006;49(4):1420-1432. doi:10.1021/jm050797a.
Lancelot JC, Robba M, Bonnet JJ, Vaugeois JM, Costentin J. Synthesis and preliminary study of the activity of thiophene analogues of pyrovalerone on the neuronal uptake of the monoamines. Eur J Med Chem. 1992;27(3):297-300. doi:10.1016/0223-5234(92)90015-S.
Bäckberg M, Jönsson K-H, Beck O, Helander A. Investigation of drug products received for analysis in the Swedish STRIDA project on new psychoactive substances. Drug Test Anal. 2018;10(2):340-349. doi:10.1002/dta.2226.
Niebel A, Krumbiegel F, Hartwig S, Parr MK, Tsokos M. Detection and quantification of synthetic cathinones and selected piperazines in hair by LC-MS/MS. Forensic Sci Med. 2020;16(1):32-42. doi:10.1007/s12024-019-00209-z.
Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D. The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci Int. 2017;279:192-202. doi:10.1016/j.forsciint.2017.08.031.
Sorribes-Soriano A, Esteve-Turrillas FA, Armenta S, Amorós P, Herrero-Martínez JM. Amphetamine-type stimulants analysis in oral fluid based on molecularly imprinting extraction. Anal Chim Acta. 2019;1052:73-83. doi:10.1016/j.aca.2018.11.046.
Giorgetti A, Barone R, Pelletti G, et al. Development and validation of a rapid LC-MS/MS method for the detection of 182 novel psychoactive substances in whole blood. Drug Test Anal. 2022;14(2):202-223. doi:10.1002/dta.3170.
Dalvie D, Obach RS, Kang P, et al. Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites. Chem Res Toxicol. 2009;22(2):357-368. doi:10.1021/tx8004357.
Franz F, Angerer V, Moosmann B, Auwärter V. Phase I metabolism of the highly potent synthetic cannabinoid MDMB-CHMICA and detection in human urine samples. Drug Test Anal. 2017;9(5):744-753. doi:10.1002/dta.2049.
Pulver B, Riedel J, Westphal F, et al. A new synthetic cathinone: 3,4-EtPV or 3,4-Pr-PipVP? An unsuccessful attempt to circumvent the German legislation on new psychoactive substances. Drug Test Anal. 2023;15(1):84-96. doi:10.1002/dta.3371.
NpSG - Neue-psychoaktive-Stoffe-Gesetz. Accessed February 8, 2023. https://www.gesetze-im-internet.de/npsg/BJNR261510016.html.
Eve&rave online forum. EtPV (3,4-EthylenPyroValeron). Accessed February 8, 2023. https://www.eve-rave.ch/Forum/viewtopic.php?f=53&t=71980&start=90.
Pantorise online forum. Testreihe 3,4-EtPV. Accessed February 8, 2023 https://pantorise.net/viewtopic.php?t=1637.
Baumann MH, Partilla JS, Lehner KR. Psychoactive “bath salts”: not so soothing. Eur J Pharmacol. 2013;698(1):1-5. doi:10.1016/j.ejphar.2012.11.020.
Simmler L, Buser T, Donzelli M, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168(2):458-470. doi:10.1111/j.1476-5381.2012.02145.x.
Kelly JP. Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal. 2011;3(7-8):439-453. doi:10.1002/dta.313.
Cozzi NV, Sievert MK, Shulgin AT, Jacob P, Ruoho AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur J Pharmacol. 1999;381(1):63-69. doi:10.1016/S0014-2999(99)00538-5.
Niello M, Sideromenos S, Gradisch R, et al. Persistent binding at dopamine transporters determines sustained psychostimulant effects. Proc Natl Acad Sci U S A. 2023;120(6):e2114204120. doi:10.1073/pnas.2114204120.
Bauer C, Banks M, Blough B, Negus S. Use of intracranial self-stimulation to evaluate abuse-related and abuse-limiting effects of monoamine releasers in rats. Br J Pharmacol. 2013;168(4):850-862. doi:10.1111/j.1476-5381.2012.02214.x.
Verrico CD, Miller GM, Madras BK. MDMA (ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology (Berl). 2007;189(4):489-503. doi:10.1007/s00213-005-0174-5.
Zaitsu K, Katagi M, Kamata HT, et al. Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int. 2009;188(1):131-139. doi:10.1016/j.forsciint.2009.04.001.
Brenneisen R, Geisshüsler S, Schorno X. Metabolism of cathinone to (−)-norephedrine and (−)-norpseudoephedrine. J Pharm Pharmacol. 1986;38(4):298-300. doi:10.1111/j.2042-7158.1986.tb04571.x.
Ishii A, Kusakabe K, Kato N, Sasaki SI, Tsujikawa K, Wada T. Studies on the phase I metabolites of the new designer drug 1-(2,3-dihydro-1H-inden-5-yl)-2-(pyrrolidine-1-yl)butan-1-one (5-PPDI) in human urine. Forensic Sci Int. 2020;310:110214. doi:10.1016/j.forsciint.2020.110214.
Matsuta S, Shima N, Kamata H, et al. Metabolism of the designer drug α-pyrrolidinobutiophenone (α-PBP) in humans: identification and quantification of the phase I metabolites in urine. Forensic Sci Int. 2015;249:181-188. doi:10.1016/j.forsciint.2015.02.004.
Shima N, Kakehashi H, Matsuta S, et al. Urinary excretion and metabolism of the α-pyrrolidinophenone designer drug 1-phenyl-2-(pyrrolidin-1-yl)octan-1-one (PV9) in humans. Forensic Toxicol. 2015;33(2):279-294. doi:10.1007/s11419-015-0274-9.
Shima N, Katagi M, Kamata H, et al. Metabolism of the newly encountered designer drug α-pyrrolidinovalerophenone in humans: identification and quantitation of urinary metabolites. Forensic Toxicol. 2014;32(1):59-67. doi:10.1007/s11419-013-0202-9.
معلومات مُعتمدة: IZ25-5793-2019-33 Internal Security Fund of the European Union
فهرسة مساهمة: Keywords: monoamine transporter re-uptake inhibition; new psychoactive substances; pharmacokinetics; phase I metabolism; synthetic cathinone
المشرفين على المادة: 0 (Synthetic Cathinone)
0 (Biomarkers)
0 (Piperidines)
تواريخ الأحداث: Date Created: 20230711 Date Completed: 20240312 Latest Revision: 20240312
رمز التحديث: 20240312
DOI: 10.1002/dta.3538
PMID: 37431186
قاعدة البيانات: MEDLINE
الوصف
تدمد:1942-7611
DOI:10.1002/dta.3538