دورية أكاديمية

Visual attentional guidance during smooth pursuit eye movements: Distractor interference is independent of distractor-target similarity.

التفاصيل البيبلوغرافية
العنوان: Visual attentional guidance during smooth pursuit eye movements: Distractor interference is independent of distractor-target similarity.
المؤلفون: Stolte M; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria., Kraus L; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria., Ansorge U; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria.; Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.; Research Platform Mediatised Lifeworlds, University of Vienna, Vienna, Austria.
المصدر: Psychophysiology [Psychophysiology] 2023 Dec; Vol. 60 (12), pp. e14384. Date of Electronic Publication: 2023 Jul 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-5958 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell
Original Publication: Baltimore, Williams & Wilkins.
مواضيع طبية MeSH: Pursuit, Smooth* , Eye Movements*, Humans ; Attention ; Reaction Time
مستخلص: In the current study, we used abrupt-onset distractors similar and dissimilar in luminance to the target of a smooth pursuit eye-movement to test if abrupt-onset distractors capture attention in a top-down or bottom-up fashion while the eyes track a moving object. Abrupt onset distractors were presented at different positions relative to the current position of a pursuit target during the closed-loop phase of smooth pursuit. Across experiments, we varied the duration of the distractors, their motion direction, and task-relevance. We found that abrupt-onset distractors decreased the gain of horizontally directed smooth-pursuit eye-movements. This effect, however, was independent of the similarity in luminance between distractor and target. In addition, distracting effects on horizontal gain were the same, regardless of the exact duration and position of the distractors, suggesting that capture was relatively unspecific and short-lived (Experiments 1 and 2). This was different with distractors moving in a vertical direction, perpendicular to the horizontally moving target. In line with past findings, these distractors caused suppression of vertical gain (Experiment 3). Finally, making distractors task-relevant by asking observers to report distractor positions increased the pursuit gain effect of the distractors. This effect was also independent of target-distractor similarity (Experiment 4). In conclusion, the results suggest that a strong location signal exerted by the pursuit targets led to very brief and largely location-unspecific interference through the abrupt onsets and that this interference was bottom-up, implying that the control of smooth pursuit was independent of other target features besides its motion signal.
(© 2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)
References: Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412. https://doi.org/10.1016/j.jml.2007.12.005.
Blohm, G., Missal, M., & Lefevre, P. (2005). Direct evidence for a position input to the smooth pursuit system. Journal of Neurophysiology, 94(1), 712-721. https://doi.org/10.1152/jn.00093.2005.
Borji, A., & Itti, L. (2012). State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 185-207. https://doi.org/10.1109/TPAMI.2012.89.
Brown, B. (1972). Dynamic visual acuity, eye movements and peripheral acuity for moving targets. Vision Research, 12(2), 305-321. https://doi.org/10.1016/0042-6989(72)90120-4.
Buonocore, A., & Hafed, Z. M. (2021). A sensory race between oculomotor control areas for coordinating motor timing. Journal of Vision, 21(9), 2420. https://doi.org/10.1167/jov.21.9.2420.
Buonocore, A., Skinner, J., & Hafed, Z. M. (2019). Eye position error influence over “open-loop” smooth pursuit initiation. Journal of Neuroscience, 39(14), 2709-2721. https://doi.org/10.1523/JNEUROSCI.2178-18.2019.
Busettini, C., & Mays, L. E. (2003). Pontine omnipause activity during conjugate and disconjugate eye movements in macaques. Journal of Neurophysiology, 90(6), 3838-3853. https://doi.org/10.1152/jn.00858.2002.
Clement, R. A., & Akman, O. E. (2020). Slow-fast control of eye movements: An instance of Zeeman's model for an action. Biological Cybernetics, 114(4-5), 519-532. https://doi.org/10.1007/s00422-020-00845-7.
Collewijn, H., & Tamminga, E. P. (1986). Human fixation and pursuit in normal and open-loop conditions: Effects of central and peripheral retinal targets. Journal of Physiology, 379, 109-129. https://doi.org/10.1113/jphysiol.1986.sp016243.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222. https://doi.org/10.1146/annurev.ne.18.030195.001205.
Ferrera, V. P., & Lisberger, S. G. (1995). Attention and target selection for smooth pursuit eye movements. Journal of Neuroscience, 15(11), 7472-7484. https://doi.org/10.1523/JNEUROSCI.15-11-07472.1995.
Folk, C. L., & Remington, R. W. (2015). Unexpected abrupt onsets can override a top-down set for color. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 1153-1165. https://doi.org/10.1037/xhp0000084.
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044. https://doi.org/10.1037/0096-1523.18.4.1030.
Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 317-329. https://doi.org/10.1037/0096-1523.20.2.317.
Gaspelin, N., Ruthruff, E., & Lien, M.-C. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1104-1120. https://doi.org/10.1037/xhp0000214.
Goller, F., Ditye, T., & Ansorge, U. (2016). The contribution of color to attention capture effects during search for onset targets. Attention, Perception, & Psychophysics, 78(3), 789-807. https://doi.org/10.3758/s13414-015-1053-8.
Goller, F., Schoeberl, T., & Ansorge, U. (2020). Testing the top-down contingent capture of attention for abrupt-onset cues: Evidence from cue-elicited N2pc. Psychophysiology, 57(11), e13655. https://doi.org/10.1111/psyp.13655.
Kerzel, D., Born, S., & Souto, D. (2009). Smooth pursuit eye movements and perception share target selection, but only some central resources. Behavioural Brain Research, 201(1), 66-73. https://doi.org/10.1016/j.bbr.2009.01.032.
Kerzel, D., Born, S., & Souto, D. (2010). Inhibition of steady-state smooth pursuit and catch-up saccades by abrupt visual and auditory onsets. Journal of Neurophysiology, 104(5), 2573-2585. https://doi.org/10.1152/jn.00193.2010.
Kerzel, D., Souto, D., & Ziegler, N. E. (2008). Effects of attention shifts to stationary objects during steady-state smooth pursuit eye movements. Vision Research, 48(7), 958-969. https://doi.org/10.1016/j.visres.2008.01.015.
Khurana, B., & Kowler, E. (1987). Shared attentional control of smooth eye movement and perception. Vision Research, 27(9), 1603-1618. https://doi.org/10.1016/0042-6989(87)90168-4.
Kowler, E., van der Steen, J., Tamminga, E. P., & Collewijn, H. (1984). Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli. Vision Research, 24(12), 1789-1798. https://doi.org/10.1016/0042-6989(84)90010-5.
Lindner, A., & Ilg, U. J. (2006). Suppression of optokinesis during smooth pursuit eye movements revisited: The role of extra-retinal information. Vision Research, 46(6-7), 761-767. https://doi.org/10.1016/j.visres.2005.09.033.
Malevich, T., Buonocore, A., & Hafed, Z. M. (2020). Rapid stimulus-driven modulation of slow ocular position drifts. eLife, 9, e57595. https://doi.org/10.7554/eLife.57595.
Masson, G., Proteau, L., & Mestre, D. R. (1995). Effects of stationary and moving textured backgrounds on the visuo-oculo-manual tracking in humans. Vision Research, 35(6), 837-852. https://doi.org/10.1016/0042-6989(94)00185-O.
Missal, M., & Keller, E. L. (2002). Common inhibitory mechanism for saccades and smooth-pursuit eye movements. Journal of Neurophysiology, 88(4), 1880-1892. https://doi.org/10.1152/jn.2002.88.4.1880.
Murphy, B. J., Kowler, E., & Steinman, R. M. (1975). Slow oculomotor control in the presence of moving backgrounds. Vision Research, 15(11), 1263-1268. https://doi.org/10.1016/0042-6989(75)90172-8.
Robinson, D. A., Gordon, J. L., & Gordon, S. E. (1986). A model of the smooth pursuit eye movement system. Biological Cybernetics, 55(1), 43-57. https://doi.org/10.1007/BF00363977.
Souto, D., & Kerzel, D. (2008). Dynamics of attention during the initiation of smooth pursuit eye movements. Journal of Vision, 8(14), 3. https://doi.org/10.1167/8.14.3.
Souto, D., & Kerzel, D. (2014). Ocular tracking responses to background motion gated by feature-based attention. Journal of Neurophysiology, 112(5), 1074-1081. https://doi.org/10.1152/jn.00810.2013.
Souto, D., & Kerzel, D. (2021). Visual selective attention and the control of tracking eye movements: A critical review. Journal of Neurophysiology, 125(5), 1552-1576. https://doi.org/10.1152/jn.00145.2019.
Spering, M., & Gegenfurtner, K. R. (2007). Contextual effects on smooth-pursuit eye movements. Journal of Neurophysiology, 97(2), 1353-1367. https://doi.org/10.1152/jn.01087.2006.
Spering, M., Gegenfurtner, K. R., & Kerzel, D. (2006). Distractor interference during smooth pursuit eye movements. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1136-1154. https://doi.org/10.1037/0096-1523.32.5.1136.
Ter Braak, J. W. G., & Buis, C. (1970). Optokinetic nystagmus and attention. International Journal of Neurology, 8, 34-42.
Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E., & Zelinsky, G. J. (1999). Influence of attentional capture on oculomotor control. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1595-1608. https://doi.org/10.1037/0096-1523.25.6.1595.
Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2002). Fixational eye movements are not affected by abrupt onsets that capture attention. Vision Research, 42, 1663-1669. https://doi.org/10.1016/S0042-6989(02)00076-7.
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601-621. https://doi.org/10.1037/0096-1523.10.5.601.
Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121-134. https://doi.org/10.1037/0096-1523.16.1.121.
فهرسة مساهمة: Keywords: abrupt onsets; distractor effect; smooth pursuit; top-down contingent capture
تواريخ الأحداث: Date Created: 20230711 Date Completed: 20231108 Latest Revision: 20231113
رمز التحديث: 20240628
DOI: 10.1111/psyp.14384
PMID: 37431573
قاعدة البيانات: MEDLINE
الوصف
تدمد:1540-5958
DOI:10.1111/psyp.14384