دورية أكاديمية

16R-HETE and 16S-HETE alter human cytochrome P450 1B1 enzyme activity probably through an allosteric mechanism.

التفاصيل البيبلوغرافية
العنوان: 16R-HETE and 16S-HETE alter human cytochrome P450 1B1 enzyme activity probably through an allosteric mechanism.
المؤلفون: Hidayat R; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada., Shoieb SM; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada., Mosa FES; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada., Barakat K; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada., Brocks DR; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada., Isse FA; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada., Gerges SH; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada., El-Kadi AOS; Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada. aelkadi@ualberta.ca.
المصدر: Molecular and cellular biochemistry [Mol Cell Biochem] 2024 Jun; Vol. 479 (6), pp. 1379-1390. Date of Electronic Publication: 2023 Jul 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Springer
Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
مواضيع طبية MeSH: Cytochrome P-450 CYP1B1*/metabolism , Cytochrome P-450 CYP1B1*/genetics , Hydroxyeicosatetraenoic Acids*/metabolism , Hydroxyeicosatetraenoic Acids*/pharmacology, Humans ; Allosteric Regulation/drug effects
مستخلص: Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Esteves F, Rueff J, Kranendonk M (2021) The central role of cytochrome P450 in xenobiotic metabolism-a brief review on a fascinating enzyme family. J Xenobiot 11:94–114. https://doi.org/10.3390/jox11030007. (PMID: 10.3390/jox11030007342062778293344)
Powell WS, Rokach J (2015) Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta 1851:340–55. https://doi.org/10.1016/j.bbalip.2014.10.008. (PMID: 10.1016/j.bbalip.2014.10.00825449650)
Maayah ZH, Althurwi HN, Abdelhamid G, Lesyk G, Jurasz P, El-Kadi AO (2016) CYP1B1 inhibition attenuates doxorubicin-induced cardiotoxicity through a mid-chain HETEs-dependent mechanism. Pharmacol Res 105:28–43. https://doi.org/10.1016/j.phrs.2015.12.016. (PMID: 10.1016/j.phrs.2015.12.01626772815)
Maayah ZH, Althurwi HN, El-Sherbeni AA, Abdelhamid G, Siraki AG, El-Kadi AO (2017) The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 429:151–165. https://doi.org/10.1007/s11010-017-2943-y. (PMID: 10.1007/s11010-017-2943-y28251434)
Elshenawy OH, Anwar-Mohamed A, El-Kadi AO (2013) 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Curr Drug Metab 14:706–19. https://doi.org/10.2174/1389200211314060007. (PMID: 10.2174/138920021131406000723701160)
Nussinov R, Tsai CJ (2012) The different ways through which specificity works in orthosteric and allosteric drugs. Curr Pharm Des 18:1311–6. https://doi.org/10.2174/138161212799436377. (PMID: 10.2174/138161212799436377223161557458136)
Laskowski RA, Gerick F, Thornton JM (2009) The structural basis of allosteric regulation in proteins. FEBS Lett 583:1692–1698. https://doi.org/10.1016/j.febslet.2009.03.019. (PMID: 10.1016/j.febslet.2009.03.01919303011)
Iwata S, Ohta T (1993) Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase. J Mol Biol 230:21–7. https://doi.org/10.1006/jmbi.1993.1122. (PMID: 10.1006/jmbi.1993.11228450537)
Yuan Y, Tam MF, Simplaceanu V, Ho C (2015) New look at hemoglobin allostery. Chem Rev 115:1702–24. https://doi.org/10.1021/cr500495x. (PMID: 10.1021/cr500495x256079814507747)
Takayanagi M, Kurisaki I, Nagaoka M (2014) Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure. Sci Rep 4:4601. https://doi.org/10.1038/srep04601. (PMID: 10.1038/srep04601247105213978498)
Kotaka M, Ren J, Lockyer M, Hawkins AR, Stammers DK (2006) Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine. J Biol Chem 281:31544–52. https://doi.org/10.1074/jbc.M605886200. (PMID: 10.1074/jbc.M60588620016905770)
Leow JWH, Chan ECY (2019) Atypical Michaelis-Menten kinetics in cytochrome P450 enzymes: a focus on substrate inhibition. Biochem Pharmacol 169:113615. https://doi.org/10.1016/j.bcp.2019.08.017. (PMID: 10.1016/j.bcp.2019.08.01731445022)
Davydov DR, Halpert JR (2008) Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 4:1523–35. https://doi.org/10.1517/17425250802500028. (PMID: 10.1517/17425250802500028190403282651226)
Polic V, Auclair K (2017) Allosteric activation of cytochrome P450 3A4 via progesterone bioconjugation. Bioconjug Chem 28:885–889. https://doi.org/10.1021/acs.bioconjchem.6b00604. (PMID: 10.1021/acs.bioconjchem.6b0060428339191)
Dong L, Yuan C, Orlando BJ, Malkowski MG, Smith WL (2016) Fatty acid binding to the allosteric subunit of cyclooxygenase-2 relieves a tonic inhibition of the catalytic subunit. J Biol Chem 291:25641–25655. https://doi.org/10.1074/jbc.M116.757310. (PMID: 10.1074/jbc.M116.757310277568405207261)
Maayah ZH, Abdelhamid G, El-Kadi AO (2015) Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB. Cell Biol Toxicol 31:241–59. https://doi.org/10.1007/s10565-015-9308-7. (PMID: 10.1007/s10565-015-9308-726493311)
Maayah ZH, El-Kadi AO (2016) 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. Arch Toxicol 90:359–73. https://doi.org/10.1007/s00204-014-1419-z. (PMID: 10.1007/s00204-014-1419-z25600587)
Shoieb SM, El-Kadi AOS (2018) S-Enantiomer of 19-hydroxyeicosatetraenoic acid preferentially protects against angiotensin II-induced cardiac hypertrophy. Drug Metab Dispos 46:1157–1168. https://doi.org/10.1124/dmd.118.082073. (PMID: 10.1124/dmd.118.08207329880629)
Caligiuri SP, Rodriguez-Leyva D, Aukema HM, Ravandi A, Weighell W, Guzman R, Pierce GN (2016) Dietary flaxseed reduces central aortic blood pressure without cardiac involvement but through changes in plasma oxylipins. Hypertension 68:1031–8. https://doi.org/10.1161/hypertensionaha.116.07834. (PMID: 10.1161/hypertensionaha.116.0783427528063)
Caligiuri SPB, Aukema HM, Ravandi A, Lavallée R, Guzman R, Pierce GN (2017) Specific plasma oxylipins increase the odds of cardiovascular and cerebrovascular events in patients with peripheral artery disease. Can J Physiol Pharmacol 95:961–968. https://doi.org/10.1139/cjpp-2016-0615. (PMID: 10.1139/cjpp-2016-061528714336)
Lorenzen A, Kennedy SW (1993) A fluorescence-based protein assay for use with a microplate reader. Anal Biochem 214:346–8. https://doi.org/10.1006/abio.1993.1504. (PMID: 10.1006/abio.1993.15048250247)
Venkatakrishnan K, von Moltke LL, Obach RS, Greenblatt DJ (2003) Drug metabolism and drug interactions: application and clinical value of in vitro models. Curr Drug Metab 4:423–59. https://doi.org/10.2174/1389200033489361. (PMID: 10.2174/138920003348936114529374)
Zhou SF, Yang LP, Zhou ZW, Liu YH, Chan E (2009) Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. Aaps j 11:481–94. https://doi.org/10.1208/s12248-009-9127-y. (PMID: 10.1208/s12248-009-9127-y195909652758120)
Rochat B, Morsman JM, Murray GI, Figg WD, McLeod HL (2001) Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther 296:537–41. (PMID: 11160641)
Li F, Zhu W, Gonzalez FJ (2017) Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol Ther 178:18–30. https://doi.org/10.1016/j.pharmthera.2017.03.007. (PMID: 10.1016/j.pharmthera.2017.03.007283229725600638)
El-Sherbeni AA, El-Kadi AO (2014) Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As. Drug Metab Dispos 42:1498–507. https://doi.org/10.1124/dmd.114.057836. (PMID: 10.1124/dmd.114.05783624969701)
Shoieb SM, El-Sherbeni AA, El-Kadi AOS (2019) Subterminal hydroxyeicosatetraenoic acids: crucial lipid mediators in normal physiology and disease states. Chem Biol Interact 299:140–150. https://doi.org/10.1016/j.cbi.2018.12.004. (PMID: 10.1016/j.cbi.2018.12.00430543782)
Elkhatali S, El-Sherbeni AA, Elshenawy OH, Abdelhamid G, El-Kadi AO (2015) 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy. Toxicol Appl Pharmacol 289:550–9. https://doi.org/10.1016/j.taap.2015.10.003. (PMID: 10.1016/j.taap.2015.10.00326454030)
Shoieb SM, El-Sherbeni AA, El-Kadi AOS (2019) Identification of 19-(S/R)hydroxyeicosatetraenoic acid as the first endogenous noncompetitive inhibitor of cytochrome P450 1B1 with enantioselective activity. Drug Metab Dispos 47:67–70. https://doi.org/10.1124/dmd.118.084657. (PMID: 10.1124/dmd.118.08465730420405)
Reddy YK, Reddy LM, Capdevila JH, Falck JR (2003) Practical, asymmetric synthesis of 16-hydroxyeicosa-5(Z),8(Z), 11(Z),14(Z)-tetraenoic acid (16-HETE), an endogenous inhibitor of neutrophil activity. Bioorg Med Chem Lett 13:3719–20. https://doi.org/10.1016/j.bmcl.2003.08.005. (PMID: 10.1016/j.bmcl.2003.08.00514552765)
Bednar MM, Gross CE, Russell SR, Fuller SP, Ahern TP, Howard DB, Falck JR, Reddy KM, Balazy M (2000) 16(R)-hydroxyeicosatetraenoic acid, a novel cytochrome P450 product of arachidonic acid, suppresses activation of human polymorphonuclear leukocyte and reduces intracranial pressure in a rabbit model of thromboembolic stroke. Neurosurgery 47:1410–8. (PMID: 10.1097/00006123-200012000-0002911126912)
Carroll MA, Balazy M, Margiotta P, Huang DD, Falck JR, McGiff JC (1996) Cytochrome P-450-dependent HETEs: profile of biological activity and stimulation by vasoactive peptides. Am J Physiol 271:R863-9. https://doi.org/10.1152/ajpregu.1996.271.4.R863. (PMID: 10.1152/ajpregu.1996.271.4.R8638897975)
McFadyen MC, Melvin WT, Murray GI (2004) Cytochrome P450 CYP1B1 activity in renal cell carcinoma. Br J Cancer 91:966–71. https://doi.org/10.1038/sj.bjc.6602053. (PMID: 10.1038/sj.bjc.6602053152809212409861)
Edson KZ, Rettie AE (2013) CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Curr Top Med Chem 13:1429–40. https://doi.org/10.2174/15680266113139990110. (PMID: 10.2174/15680266113139990110236881334245146)
Jorge-Nebert LF, Jiang Z, Chakraborty R, Watson J, Jin L, McGarvey ST, Deka R, Nebert DW (2010) Analysis of human CYP1A1 and CYP1A2 genes and their shared bidirectional promoter in eight world populations. Hum Mutat 31:27–40. https://doi.org/10.1002/humu.21132. (PMID: 10.1002/humu.21132198028942797837)
Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–50. https://doi.org/10.1074/jbc.R400004200. (PMID: 10.1074/jbc.R40000420015028720)
Wang Y, Wang G, Moitessier N, Mittermaier AK (2020) Enzyme kinetics by isothermal titration calorimetry: allostery, inhibition, and dynamics. Front Mol Biosci 7:583826. https://doi.org/10.3389/fmolb.2020.583826. (PMID: 10.3389/fmolb.2020.583826331954297604385)
Liu J, Taylor SF, Dupart PS, Arnold CL, Sridhar J, Jiang Q, Wang Y, Skripnikova EV, Zhao M, Foroozesh M (2013) Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1. J Med Chem 56:4082–92. https://doi.org/10.1021/jm4003654. (PMID: 10.1021/jm4003654236009583685175)
Krasulova K, Holas O, Anzenbacher P (2017) Influence of amlodipine enantiomers on human microsomal cytochromes P450: stereoselective time-dependent inhibition of CYP3A enzyme activity. Molecules. https://doi.org/10.3390/molecules22111879. (PMID: 10.3390/molecules22111879290997696150391)
Nishida CR, Everett S, Ortiz de Montellano PR (2013) Specificity determinants of CYP1B1 estradiol hydroxylation. Mol Pharmacol 84:451–8. https://doi.org/10.1124/mol.113.087700. (PMID: 10.1124/mol.113.087700238216473876821)
معلومات مُعتمدة: PS 168846 Canada CAPMC CIHR; PS 168846 Canada CAPMC CIHR
فهرسة مساهمة: Keywords: 16-HETE; Allosteric modulation; CYP1A2; CYP1B1; EROD; MROD
المشرفين على المادة: EC 1.14.14.1 (Cytochrome P-450 CYP1B1)
0 (Hydroxyeicosatetraenoic Acids)
EC 1.14.14.1 (CYP1B1 protein, human)
79551-85-2 (19-hydroxy-5,8,11,14-eicosatetraenoic acid)
تواريخ الأحداث: Date Created: 20230712 Date Completed: 20240704 Latest Revision: 20240704
رمز التحديث: 20240704
DOI: 10.1007/s11010-023-04801-4
PMID: 37436655
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4919
DOI:10.1007/s11010-023-04801-4