دورية أكاديمية

A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems.

التفاصيل البيبلوغرافية
العنوان: A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems.
المؤلفون: Smith JG; National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA.; Conservation and Science Division, Monterey Bay Aquarium, Monterey, California, USA., Free CM; Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA.; Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA., Lopazanski C; National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA.; Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA., Brun J; National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA., Anderson CR; Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, La Jolla, California, USA., Carr MH; Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA., Claudet J; National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Paris, France., Dugan JE; Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA., Eurich JG; National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA.; Environmental Defense Fund, Santa Barbara, California, USA., Francis TB; Puget Sound Institute, University of Washington, Tacoma, Washington, USA., Hamilton SL; Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA., Mouillot D; MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France.; Institut Universitaire de France (IUF), Paris, France., Raimondi PT; Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA., Starr RM; Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA., Ziegler SL; Odum School of Ecology, University of Georgia, Athens, Georgia, USA., Nickols KJ; Department of Biology, California State University Northridge, Northridge, California, USA., Caselle JE; Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA.
المصدر: Global change biology [Glob Chang Biol] 2023 Oct; Vol. 29 (19), pp. 5634-5651. Date of Electronic Publication: 2023 Jul 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Ecosystem* , Kelp*, Animals ; Conservation of Natural Resources/methods ; Biomass ; Invertebrates ; Forests ; Fishes
مستخلص: Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
(© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
References: Azzurro, E., & D'Amen, M. (2022). Climate change paves the way for a new inter-ocean fish interchange. Frontiers in Ecology and the Environment, 20(10), 558-563. https://doi.org/10.1002/fee.2459.
Baetscher, D. S., Anderson, E. C., Gilbert-Horvath, E. A., Malone, D. P., Saarman, E. T., Carr, M. H., & Garza, J. C. (2019). Dispersal of a nearshore marine fish connects marine reserves and adjacent fished areas along an open coast. Molecular Ecology, 28(7), 1611-1623. https://doi.org/10.1111/mec.15044.
Bastari, A., Micheli, F., Ferretti, F., Pusceddu, A., & Cerrano, C. (2016). Large marine protected areas (LMPAs) in the Mediterranean Sea: The opportunity of the Adriatic Sea. Marine Policy, 68, 165-177. https://doi.org/10.1016/j.marpol.2016.03.010.
Bates, A. E., Cooke, R. S. C., Duncan, M. I., Edgar, G. J., Bruno, J. F., Benedetti-Cecchi, L., Côté, I. M., Lefcheck, J. S., Costello, M. J., Barrett, N., Bird, T. J., Fenberg, P. B., & Stuart-Smith, R. D. (2019). Climate resilience in marine protected areas and the ‘Protection Paradox’. Biological Conservation, 236, 305-314. https://doi.org/10.1016/j.biocon.2019.05.005.
Bond, N. A., Cronin, M. F., Freeland, H., & Mantua, N. (2015). Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters, 42(9), 3414-3420. https://doi.org/10.1002/2015GL063306.
Botsford, L. W., White, J. W., Carr, M. H., & Caselle, J. E. (2014). Chapter six-Marine protected area networks in California, USA. In M. L. Johnson & J. Sandell (Eds.), Advances in marine biology (Vol. 69, pp. 205-251). Academic Press. https://doi.org/10.1016/B978-0-12-800214-8.00006-2.
Brooks, R., Ziegler, S., Starr, R., Wendt, D., Ruttenberg, B., Bellquist, L., Caselle, J., Morgan, S., Mulligan, T., Semmens, B., Tyburczy, J., & Hamilton, S. (2022). Nearshore fishes abundance and distribution data. California Collaborative Fisheries Research Program (CCFRP). https://search.dataone.org/view/urn%3Auuid%3Af843f110-e691-4d26-bf12-3854a4b641cd.
Brown, A. M., Warton, D. I., Andrew, N. R., Binns, M., Cassis, G., & Gibb, H. (2014). The fourth-corner solution - Using predictive models to understand how species traits interact with the environment. Methods in Ecology and Evolution, 5(4), 344-352. https://doi.org/10.1111/2041-210X.12163.
Bruno, J. F., Côté, I. M., & Toth, L. T. (2019). Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don't marine protected areas improve reef resilience? Annual Review of Marine Science, 11(1), 307-334. https://doi.org/10.1146/annurev-marine-010318-095300.
Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F., Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., … Poloczanska, E. S. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507(7493), 492-495. https://doi.org/10.1038/nature12976.
Carr, M. H., Robinson, S. P., Wahle, C., Davis, G., Kroll, S., Murray, S., Schumacker, E. J., & Williams, M. (2017). The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(S1), 6-29. https://doi.org/10.1002/aqc.2800.
Caselle, J. E., Rassweiler, A., Hamilton, S. L., & Warner, R. R. (2015). Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Scientific Reports, 5(1), 14102. https://doi.org/10.1038/srep14102.
Cheung, W. W. L., Frölicher, T. L., Lam, V. W. Y., Oyinlola, M. A., Reygondeau, G., Sumaila, U. R., Tai, T. C., Teh, L. C. L., & Wabnitz, C. C. C. (2021). Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Science Advances, 7(40), eabh0895. https://doi.org/10.1126/sciadv.abh0895.
Chin, T. M., Vazquez-Cuervo, J., & Armstrong, E. M. (2017). A multi-scale high-resolution analysis of global sea surface temperature. Remote Sensing of Environment, 200, 154-169. https://doi.org/10.1016/j.rse.2017.07.029.
Cieri, K., Starr, R., Caselle, J., Kahn, A., Lauermann, A., Lindholm, J., Tissot, B., Ziegler, S., Bretz, C., Carlson, P., Hoeke, J., Jainese, C., Martel, G., McDermott, S., Mohay, J., & Salinas-Ruiz, P. (2022). Monitoring and evaluation of mid-depth rock ecosystems in the California MLPA marine protected area network: ROV dataset. https://opc.dataone.org/view/urn%3Auuid%3A7353f779-b722-4064-8074-3e9c651ed38e.
Cinner, J. E., Caldwell, I. R., Thiault, L., Ben, J., Blanchard, J. L., Coll, M., Diedrich, A., Eddy, T. D., Everett, J. D., Folberth, C., Gascuel, D., Guiet, J., Gurney, G. G., Heneghan, R. F., Jägermeyr, J., Jiddawi, N., Lahari, R., Kuange, J., Liu, W., … Pollnac, R. (2022). Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. Nature Communications, 13(1), 3530. https://doi.org/10.1038/s41467-022-30991-4.
Costello, M. J. (2014). Long live Marine Reserves: A review of experiences and benefits. Biological Conservation, 176, 289-296. https://doi.org/10.1016/j.biocon.2014.04.023.
Day, J., Dudley, N., Hockings, M., Holmes, G., Laffoley, D. D. A., Stolton, S., & Wells, S. M. (2012). Guidelines for applying the IUCN protected area management categories to marine protected areas. IUCN.
Di Lorenzo, E., & Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6(11), 1042-1047. https://doi.org/10.1038/nclimate3082.
Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A., & Claudet, J. (2020). Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish and Fisheries, 21(5), 906-915. https://doi.org/10.1111/faf.12469.
Duffy, J. E., Godwin, C. M., & Cardinale, B. J. (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549(7671), 261-264. https://doi.org/10.1038/nature23886.
Duncan, M. I., Bates, A. E., James, N. C., & Potts, W. M. (2019). Exploitation may influence the climate resilience of fish populations through removing high performance metabolic phenotypes. Scientific Reports, 9(1), 11437. https://doi.org/10.1038/s41598-019-47395-y.
Emblemsvåg, M., Werner, K. M., Núñez-Riboni, I., Frelat, R., Torp Christensen, H., Fock, H. O., & Primicerio, R. (2022). Deep demersal fish communities respond rapidly to warming in a frontal region between Arctic and Atlantic waters. Global Change Biology, 28(9), 2979-2990. https://doi.org/10.1111/gcb.16113.
Field, J. C., Miller, R. R., Santora, J. A., Tolimieri, N., Haltuch, M. A., Brodeur, R. D., Auth, T. D., Dick, E. J., Monk, M. H., Sakuma, K. M., & Wells, B. K. (2021). Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current. PLoS One, 16(5), e0251638. https://doi.org/10.1371/journal.pone.0251638.
Fredston, A., Pinsky, M., Selden, R. L., Szuwalski, C., Thorson, J. T., Gaines, S. D., & Halpern, B. S. (2021). Range edges of North American marine species are tracking temperature over decades. Global Change Biology, 27(13), 3145-3156. https://doi.org/10.1111/gcb.15614.
Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019). Impacts of historical warming on marine fisheries production. Science, 363(6430), 979-983. https://doi.org/10.1126/science.aau1758.
Freedman, R. M., Brown, J. A., Caldow, C., & Caselle, J. E. (2020). Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-77885-3.
Frid, O., Malamud, S., Di Franco, A., Guidetti, P., Azzurro, E., Claudet, J., Micheli, F., Yahel, R., Sala, E., & Belmaker, J. (2023). Marine protected areas' positive effect on fish biomass persists across the steep climatic gradient of the Mediterranean Sea. Journal of Applied Ecology, 60(4), 638-649. https://doi.org/10.1111/1365-2664.14352.
Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560, 360-364. https://doi.org/10.1038/s41586-018-0383-9.
García Molinos, J., Halpern, B. S., Schoeman, D. S., Brown, C. J., Kiessling, W., Moore, P. J., Pandolfi, J. M., Poloczanska, E. S., Richardson, A. J., & Burrows, M. T. (2016). Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 6(1), 83-88. https://doi.org/10.1038/nclimate2769.
García-Reyes, M., & Sydeman, W. J. (2017). California Multivariate Ocean Climate Indicator (MOCI) and marine ecosystem dynamics. Ecological Indicators, 72, 521-529. https://doi.org/10.1016/j.ecolind.2016.08.045.
Gentemann, C. L., Fewings, M. R., & García-Reyes, M. (2017). Satellite sea surface temperatures along the West Coast of the United States during the 2014-2016 Northeast Pacific marine heat wave. Geophysical Research Letters, 44(1), 312-319. https://doi.org/10.1002/2016GL071039.
Gleason, M., Fox, E., Ashcraft, S., Vasques, J., Whiteman, E., Serpa, P., Saarman, E., Caldwell, M., Frimodig, A., Miller-Henson, M., Kirlin, J., Ota, B., Pope, E., Weber, M., & Wiseman, K. (2013). Designing a network of marine protected areas in California: Achievements, costs, lessons learned, and challenges ahead. Ocean & Coastal Management, 74, 90-101. https://doi.org/10.1016/j.ocecoaman.2012.08.013.
Goetze, J. S., Wilson, S., Radford, B., Fisher, R., Langlois, T. J., Monk, J., Knott, N. A., Malcolm, H., Currey-Randall, L. M., Ierodiaconou, D., Harasti, D., Barrett, N., Babcock, R. C., Bosch, N. E., Brock, D., Claudet, J., Clough, J., Fairclough, D. V., Heupel, M. R., … Harvey, E. S. (2021). Increased connectivity and depth improve the effectiveness of marine reserves. Global Change Biology, 27(15), 3432-3447. https://doi.org/10.1111/gcb.15635.
Grorud-Colvert, K., Sullivan-Stack, J., Roberts, C., Constant, V., Pike, E. P., Kingston, N., Laffoley, D., Sala, E., Claudet, J., Friedlander, A. M., Gill, D. A., Lester, S. E., Day, J. C., Gonçalves, E. J., Ahmadia, G. N., Rand, M., Villagomez, A., Ban, N. C., Gurney, G. G., … Lubchenco, J. (2021). The MPA Guide: A framework to achieve global goals for the ocean. Science, 373, eabf0861.
Hamilton, S. L., Caselle, J. E., Malone, D. P., & Carr, M. H. (2010). Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18272-18277. https://doi.org/10.1073/pnas.0908091107.
Harley, C. D. G., Randall Hughes, A., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, C. S., Rodriguez, L. F., Tomanek, L., & Williams, S. L. (2006). The impacts of climate change in coastal marine systems. Ecology Letters, 9(2), 228-241. https://doi.org/10.1111/j.1461-0248.2005.00871.x.
Harrison, H. B., Williamson, D. H., Evans, R. D., Almany, G. R., Thorrold, S. R., Russ, G. R., Feldheim, K. A., van Herwerden, L., Planes, S., Srinivasan, M., Berumen, M. L., & Jones, G. P. (2012). Larval export from marine reserves and the recruitment benefit for fish and fisheries. Current Biology, 22(11), 1023-1028. https://doi.org/10.1016/j.cub.2012.04.008.
Harvell, C. D., Montecino-Latorre, D., Caldwell, J. M., Burt, J. M., Bosley, K., Keller, A., Heron, S. F., Salomon, A. K., Lee, L., Pontier, O., Pattengill-Semmens, C., & Gaydos, J. K. (2019). Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Science Advances, 5(1), eaau7042. https://doi.org/10.1126/sciadv.aau7042.
Harvey, B. P., Marshall, K. E., Harley, C. D. G., & Russell, B. D. (2021). Predicting responses to marine heatwaves using functional traits. Trends in Ecology & Evolution., 37, 20-29. https://doi.org/10.1016/j.tree.2021.09.003.
Hofmann, G., Hazen, E., Ambrose, R., Aseltine-Beilson, D., Caselle, J., Chan, F., Levine, A., Micheli, F., Sunday, J., & White, W. (2021). Climate resilience and California's marine protected area network. A Report by the Ocean Protection Council Science Advisory Team Working Group and California Ocean Science Trust.
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J., Moore, P. J., Perkins-Kirkpatrick, S. E., Smale, D. A., Straub, S. C., & Wernberg, T. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications, 10(1), 2624. https://doi.org/10.1038/s41467-019-10206-z.
Holbrook, N. J., Sen Gupta, A., Oliver, E. C. J., Hobday, A. J., Benthuysen, J. A., Scannell, H. A., Smale, D. A., & Wernberg, T. (2020). Keeping pace with marine heatwaves. Nature Reviews Earth & Environment, 1, 482-493. https://doi.org/10.1038/s43017-020-0068-4.
IUCN-WCPA. (2008). Establishing resilient marine protected area networks - Making it happen: Full technical version, including ecological, social and governance considerations, as well as case studies. IUCN World Commission on Protected Areas, National Oceanic and Atmospheric Administration, and The Nature Conservancy. https://portals.iucn.org/library/node/9284.
Jacox, M. G., Edwards, C. A., Hazen, E. L., & Bograd, S. J. (2018). Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast. Journal of Geophysical Research: Oceans, 123(10), 7332-7350. https://doi.org/10.1029/2018JC014187.
Jacquemont, J., Blasiak, R., Le Cam, C., Le Gouellec, M., & Claudet, J. (2022). Ocean conservation boosts climate change mitigation and adaptation. One Earth, 5(10), 1126-1138. https://doi.org/10.1016/j.oneear.2022.09.002.
Jean-Michel, L., Eric, G., Romain, B.-B., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L. G., Charly, R., Tony, C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., & Pierre-Yves, L. T. (2021). The copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.698876.
Johnson, J. V., Dick, J. T. A., & Pincheira-Donoso, D. (2022). Marine protected areas do not buffer corals from bleaching under global warming. BMC Ecology and Evolution, 22(1), 58. https://doi.org/10.1186/s12862-022-02011-y.
Kandel, P., Pandit, R., White, B., & Polyakov, M. (2022). Do protected areas increase household income? Evidence from a meta-analysis. World Development, 159, 106024. https://doi.org/10.1016/j.worlddev.2022.106024.
Kocsis, Á. T., Zhao, Q., Costello, M. J., & Kiessling, W. (2021). Not all biodiversity rich spots are climate refugia. Biogeosciences, 18(24), 6567-6578. https://doi.org/10.5194/bg-18-6567-2021.
Laufkötter, C., Zscheischler, J., & Frölicher, T. L. (2020). High-impact marine heatwaves attributable to human-induced global warming. Science, 369(6511), 1621-1625. https://doi.org/10.1126/science.aba0690.
Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280. https://doi.org/10.1007/s004420100716.
Lima, L. S., Gherardi, D. F. M., Pezzi, L. P., dos Passos, L. G., Endo, C. A. K., & Quimbayo, J. P. (2021). Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Scientific Reports, 11(1), 10339. https://doi.org/10.1038/s41598-021-89192-6.
Love, M. S. (2011). Certainly more than you want to known about the fishes of the Pacific Coast. Really Big Press.
Love, M. S., Yoklavich, M., & Thorsteinson, L. K. (2002). The rockfishes of the Northeast Pacific. University of California Press.
Malone, D. P., Davis, K., Lonhart, S. I., Parsons-Field, A., Caselle, J. E., & Carr, M. H. (2022). Large-scale, multidecade monitoring data from kelp forest ecosystems in California and Oregon (USA). Ecology, 103(5), e3630. https://doi.org/10.1002/ecy.3630.
Marine Life Protection Act. (1999). Chapter 10.5, California State Legislature, Fish and Game Code (FGC). https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=FGC&division=3.&title=&part=&chapter=10.5.&article=.
Martinez Arbizu, P. (2020). pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4.
Mason, J. G., Eurich, J. G., Lau, J. D., Battista, W., Free, C. M., Mills, K. E., Tokunaga, K., Zhao, L. Z., Dickey-Collas, M., Valle, M., Pecl, G. T., Cinner, J. E., McClanahan, T. R., Allison, E. H., Friedman, W. R., Silva, C., Yáñez, E., Barbieri, M. Á., & Kleisner, K. M. (2022). Attributes of climate resilience in fisheries: From theory to practice. Fish and Fisheries, 23(3), 522-544. https://doi.org/10.1111/faf.12630.
McLean, M., Mouillot, D., Lindegren, M., Villéger, S., Engelhard, G., Murgier, J., & Auber, A. (2019). Fish communities diverge in species but converge in traits over three decades of warming. Global Change Biology, 25(11), 3972-3984. https://doi.org/10.1111/gcb.14785.
McLeod, E., Salm, R., Green, A., & Almany, J. (2009). Designing marine protected area networks to address the impacts of climate change. Frontiers in Ecology and the Environment, 7(7), 362-370. https://doi.org/10.1890/070211.
Mignot, A., von Schuckmann, K., Landschützer, P., Gasparin, F., van Gennip, S., Perruche, C., Lamouroux, J., & Amm, T. (2022). Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves. Nature Communications, 13(1), 4300. https://doi.org/10.1038/s41467-022-31983-0.
Multi-Agency Rocky Intertidal Network (MARINe), Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), & Raimondi, P. (2022). MARINe/PISCO: Intertidal: MARINe coastal biodiversity surveys: Point contact surveys summarized. https://doi.org/10.6085/AA/marine_cbs.5.5.
Murgier, J., McLean, M., Maire, A., Mouillot, D., Loiseau, N., Munoz, F., Violle, C., & Auber, A. (2021). Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proceedings of the Royal Society B: Biological Sciences, 288(1942), 20201600. https://doi.org/10.1098/rspb.2020.1600.
Nowakowski, A. J., Canty, S. W., Bennett, N. J., Cox, C. E., Valdivia, A., Deichmann, J. L., Akre, T. S., Bonilla-Anariba, S. E., Costedoat, S., & McField, M. (2023). Co-benefits of marine protected areas for nature and people. Nature Sustainability, 1-9. https://doi.org/10.1038/s41893-023-01150-4.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Friendly, M., McGlinn, D., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2022). vegan: Community ecology package (R package version 2.6-2). https://CRAN.R-project.org/package=vegan.
Olsen, A. Y., Larson, S., Padilla-Gamiño, J. L., & Klinger, T. (2022). Changes in fish assemblages after marine heatwave events in West Hawai'i Island. Marine Ecology Progress Series, 698, 95-109. https://doi.org/10.3354/meps14156.
Pacoureau, N., Carlson, J. K., Kindsvater, H. K., Rigby, C. L., Winker, H., Simpfendorfer, C. A., Charvet, P., Pollom, R. A., Barreto, R., Sherman, C. S., Talwar, B. S., Skerritt, D. J., Sumaila, U. R., Matsushiba, J. H., VanderWright, W. J., Yan, H. F., & Dulvy, N. K. (2023). Conservation successes and challenges for wide-ranging sharks and rays. Proceedings of the National Academy of Sciences of the United States of America, 120(5), e2216891120. https://doi.org/10.1073/pnas.2216891120.
Payne, M. R., Kudahl, M., Engelhard, G. H., Peck, M. A., & Pinnegar, J. K. (2021). Climate risk to European fisheries and coastal communities. Proceedings of the National Academy of Sciences of the United States of America, 118(40), e2018086118. https://doi.org/10.1073/pnas.2018086118.
Pörtner, H.-O., Scholes, R. J., Arneth, A., Barnes, D. K. A., Burrows, M. T., Diamond, S. E., Duarte, C. M., Kiessling, W., Leadley, P., Managi, S., McElwee, P., Midgley, G., Ngo, H. T., Obura, D., Pascual, U., Sankaran, M., Shin, Y. J., & Val, A. L. (2023). Overcoming the coupled climate and biodiversity crises and their societal impacts. Science, 380(6642), eabl4881. https://doi.org/10.1126/science.abl4881.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/.
Raimondi, P., & Smith, J. (2022). Assessment of rocky intertidal habitats for the California marine protected area decadal report. A report to the Ocean Protection Council and UC Sea Grant. https://www.opc.ca.gov/webmaster/_media_library/2022/05/MPA_RO1.pdf.
Roberts, C. M., O'Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., Pauly, D., Sáenz-Arroyo, A., Sumaila, U. R., Wilson, R. W., Worm, B., & Castilla, J. C. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6167-6175. https://doi.org/10.1073/pnas.1701262114.
Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. R., & Largier, J. L. (2019). Widespread shifts in the coastal biota of northern California during the 2014-2016 marine heatwaves. Scientific Reports, 9(1), 4216. https://doi.org/10.1038/s41598-019-40784-3.
Schroeder, I. D., Santora, J. A., Bograd, S. J., Hazen, E. L., Sakuma, K. M., Moore, A. M., Edwards, C. A., Wells, B. K., & Field, J. C. (2019). Source water variability as a driver of rockfish recruitment in the California Current Ecosystem: Implications for climate change and fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 76(6), 950-960. https://doi.org/10.1139/cjfas-2017-0480.
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., & Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4), 306-312. https://doi.org/10.1038/s41558-019-0412-1.
Smith, J. G., Tomoleoni, J., Staedler, M., Lyon, S., Fujii, J., & Tinker, M. T. (2021). Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 118(11), e2012493118. https://doi.org/10.1073/pnas.2012493118.
Smith, K. E., Burrows, M. T., Hobday, A. J., King, N. G., Moore, P. J., Sen Gupta, A., Thomsen, M. S., Wernberg, T., & Smale, D. A. (2023). Biological impacts of marine heatwaves. Annual Review of Marine Science, 15(1), 119-145. https://doi.org/10.1146/annurev-marine-032122-121437.
Vergés, A., Steinberg, P. D., Hay, M. E., Poore, A. G. B., Campbell, A. H., Ballesteros, E., Heck, K. L., Booth, D. J., Coleman, M. A., Feary, D. A., Figueira, W., Langlois, T., Marzinelli, E. M., Mizerek, T., Mumby, P. J., Nakamura, Y., Roughan, M., van Sebille, E., Gupta, A. S., … Wilson, S. K. (2014). The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences, 281(1789), 20140846. https://doi.org/10.1098/rspb.2014.0846.
Walker, H. J., Hastings, P. A., Hyde, J. R., Lea, R. N., Snodgrass, O. E., & Bellquist, L. F. (2020). Unusual occurrences of fishes in the Southern California Current System during the warm water period of 2014-2018. Estuarine, Coastal and Shelf Science, 236, 106634. https://doi.org/10.1016/j.ecss.2020.106634.
Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J., & Warton, D. (2022). mvabund: Statistical methods for analysing multivariate abundance data (R package version 4.2.1). https://CRAN.R-project.org/package=mvabund.
Warton, D. I., Wright, S. T., & Wang, Y. (2012). Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution, 3(1), 89-101. https://doi.org/10.1111/j.2041-210X.2011.00127.x.
Wernberg, T., Bennett, S., Babcock, R. C., de Bettignies, T., Cure, K., Depczynski, M., Dufois, F., Fromont, J., Fulton, C. J., Hovey, R. K., Harvey, E. S., Holmes, T. H., Kendrick, G. A., Radford, B., Santana-Garcon, J., Saunders, B. J., Smale, D. A., Thomsen, M. S., Tuckett, C. A., … Wilson, S. (2016). Climate-driven regime shift of a temperate marine ecosystem. Science, 353(6295), 169-172. https://doi.org/10.1126/science.aad8745.
Williamson, D. H., Harrison, H. B., Almany, G. R., Berumen, M. L., Bode, M., Bonin, M. C., Choukroun, S., Doherty, P. J., Frisch, A. J., Saenz-Agudelo, P., & Jones, G. P. (2016). Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park. Molecular Ecology, 25(24), 6039-6054. https://doi.org/10.1111/mec.13908.
Wilson, J. R., Lomonico, S., Bradley, D., Sievanen, L., Dempsey, T., Bell, M., McAfee, S., Costello, C., Szuwalski, C., McGonigal, H., Fitzgerald, S., & Gleason, M. (2018). Adaptive comanagement to achieve climate-ready fisheries. Conservation Letters, 11(6), e12452. https://doi.org/10.1111/conl.12452.
Ziegler, S. L., Brooks, R. O., Hamilton, S. L., Ruttenberg, B. I., Chiu, J. A., Fields, R. T., Waltz, G. T., Shen, C., Wendt, D. E., & Starr, R. M. (2022). External fishing effort regulates positive effects of no-take marine protected areas. Biological Conservation, 269, 109546. https://doi.org/10.1016/j.biocon.2022.109546.
Ziegler, S. L., Johnson, J. M., Brooks, R. O., Johnston, E. M., Mohay, J. L., Ruttenberg, B. I., Starr, R. M., Waltz, G. T., Wendt, D. E., & Hamilton, S. L. (2023). Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities. Scientific Reports, 13(1), 1405. https://doi.org/10.1038/s41598-023-28507-1.
معلومات مُعتمدة: C0302700 California Ocean Protection Council; C0752003 California Ocean Protection Council; C0752005 California Ocean Protection Council; R/MPA-43 California Sea Grant; R/MPA-44 California Sea Grant; R/MPA-45 California Sea Grant; R/MPA-46 California Sea Grant; R/MPA-48 California Sea Grant; David and Lucile Packard Foundation; OCE-1831937 National Science Foundation; Arnhold UC Santa Barbara-Conservation International Climate Solutions Collaborative; BiodivERsA; Fondation de France
فهرسة مساهمة: Keywords: California; climate change; community composition; community structure; marine heatwaves; marine protected area networks; resilience
تواريخ الأحداث: Date Created: 20230713 Date Completed: 20230907 Latest Revision: 20240109
رمز التحديث: 20240109
DOI: 10.1111/gcb.16862
PMID: 37439293
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.16862