دورية أكاديمية

Liquid Biopsy, a Potential New Detection Method in Heart Allograft Rejection.

التفاصيل البيبلوغرافية
العنوان: Liquid Biopsy, a Potential New Detection Method in Heart Allograft Rejection.
المؤلفون: Li C; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China., Wang G; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. guohua_wang@hust.edu.cn.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2023; Vol. 2695, pp. 309-315.
نوع المنشور: Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Heart Transplantation*/adverse effects, Biopsy ; Liquid Biopsy ; Transplantation, Homologous ; Graft Rejection/diagnosis ; Graft Rejection/pathology ; Allografts ; Myocardium/pathology
مستخلص: Allografts rejection remains the most important reason causing allograft dysfunction in heart transplantation recipients. Currently, the golden standard for detecting graft rejection is endomyocardial biopsy (EMB). As a new noninvasive technique, liquid biopsy emerges along with the great developments of droplet-based digital PCR and the various optimizations of next-generation sequencing technologies, which is also cheaper than EMB. This review introduces several types of liquid biopsy and its application in heart transplantation.
(© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: De Vlaminck I, Valantine HA, Snyder TM et al (2014) Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med 6(241):241ra77. https://doi.org/10.1126/scitranslmed.3007803. (PMID: 10.1126/scitranslmed.3007803249441924326260)
Marboe CC, Billingham M, Eisen H et al (2005) Nodular endocardial infiltrates (Quilty lesions) cause significant variability in diagnosis of ISHLT grade 2 and 3A rejection in cardiac allograft recipients. J Heart Lung Transplant 24(7 Suppl):S219–S226. https://doi.org/10.1016/j.healun.2005.04.001. (PMID: 10.1016/j.healun.2005.04.00115993777)
Crespo-Leiro MG, Stypmann J, Schulz U et al (2016) Clinical usefulness of gene-expression profile to rule out acute rejection after heart transplantation: CARGO II. Eur Heart J 37(33):2591–2601. https://doi.org/10.1093/eurheartj/ehv682. (PMID: 10.1093/eurheartj/ehv682267466295015661)
Di Francesco A, Fedrigo M, Santovito D et al (2018) MicroRNA signatures in cardiac biopsies and detection of allograft rejection. J Heart Lung Transplant 37(11):1329–1340. https://doi.org/10.1016/j.healun.2018.06.010. (PMID: 10.1016/j.healun.2018.06.01030174164)
Kittleson MM, Skojec DV, Wittstein IS et al (2009) The change in B-type natriuretic peptide levels over time predicts significant rejection in cardiac transplant recipients. J Heart Lung Transplant 28(7):704–709. https://doi.org/10.1016/j.healun.2009.04.019. (PMID: 10.1016/j.healun.2009.04.01919560699)
Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437. https://doi.org/10.1038/nrc3066. (PMID: 10.1038/nrc306621562580)
Matar AJ, Sachs DH, Duran-Struuck R (2022) The MHC-characterized miniature swine: lessons learned from a 40-year experience in transplantation. Transplantation 106(5):928–937. https://doi.org/10.1097/TP.0000000000003977.
Gonzalez-Nolasco B, Wang M, Prunevieille A, Benichou G (2018) Emerging role of exosomes in allorecognition and allograft rejection. Curr Opin Organ Transplant 23(1):22–27. https://doi.org/10.1097/MOT.0000000000000489. (PMID: 10.1097/MOT.0000000000000489291894135972078)
Morelli AE, Bracamonte-Baran W, Burlingham WJ (2017) Donor-derived exosomes: the trick behind the semidirect pathway of allorecognition. Curr Opin Organ Transplant 22(1):46–54. https://doi.org/10.1097/MOT.0000000000000372. (PMID: 10.1097/MOT.0000000000000372278984645407007)
Naito T, Okada Y (2021) HLA imputation and its application to genetic and molecular fine-mapping of the MHC region in autoimmune diseases. Semin Immunopathol. https://doi.org/10.1007/s00281-021-00901-9.
Courtwright AM, Kamoun M, Kearns J, Diamond JM, Golberg HJ (2020) The impact of HLA-DR mismatch status on retransplant-free survival and bronchiolitis obliterans syndrome–free survival among sensitized lung transplant recipients. J Heart Lung Transplant 39(12):1455–1462. https://doi.org/10.1016/j.healun.2020.09.016. (PMID: 10.1016/j.healun.2020.09.01633071182)
Osorio-Jaramillo E, Haasnoot GW, Kaider A et al (2020) Molecular-level HLA mismatch is associated with rejection and worsened graft survival in heart transplant recipients – a retrospective study. Transpl Int 33(9):1078–1088. https://doi.org/10.1111/tri.13657. (PMID: 10.1111/tri.1365732441827)
Opelz G, Mytilineos J, Scherer S et al (1991) Survival of DNA HLA-DR typed and matched cadaver kidney transplants. Collaborative Transplant Study. Lancet 338(8765):461–463. https://doi.org/10.1016/0140-6736(91)90540-6. (PMID: 10.1016/0140-6736(91)90540-61678443)
Takemoto SK, Terasaki PI, Gjertson DW, Cecka JM (2000) Twelve years’ experience with national sharing of HLA-matched cadaveric kidneys for transplantation. N Engl J Med 343(15):1078–1084. https://doi.org/10.1056/nejm200010123431504. (PMID: 10.1056/nejm20001012343150411027742)
Ogonek J, Kralj Juric M, Ghimire S et al (2016) Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol 7:507. https://doi.org/10.3389/fimmu.2016.00507. (PMID: 10.3389/fimmu.2016.00507279094355112259)
Alvarez M, Sun K, Murphy WJ (2016) Mouse host unlicensed NK cells promote donor allogeneic bone marrow engraftment. Blood 127(9):1202–1205. https://doi.org/10.1182/blood-2015-08-665570. (PMID: 10.1182/blood-2015-08-665570267385384778165)
Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100. https://doi.org/10.1126/science.1068440. (PMID: 10.1126/science.106844011896281)
Faridi RM, Kemp TJ, Dharmani-Khan P et al (2016) Donor-recipient matching for KIR genotypes reduces chronic GVHD and missing inhibitory KIR ligands protect against relapse after Myeloablative, HLA matched hematopoietic cell transplantation. PLoS One 11(6):e0158242. https://doi.org/10.1371/journal.pone.0158242. (PMID: 10.1371/journal.pone.0158242273415144920429)
Littera R, Piredda G, Argiolas D et al (2017) KIR and their HLA class I ligands: two more pieces towards completing the puzzle of chronic rejection and graft loss in kidney transplantation. PLoS One 12(7):e0180831. https://doi.org/10.1371/journal.pone.0180831. (PMID: 10.1371/journal.pone.0180831286866815501603)
Ritari J, Hyvärinen K, Koskela S et al (2019) Genomic prediction of relapse in recipients of allogeneic haematopoietic stem cell transplantation. Leukemia 33(1):240–248. https://doi.org/10.1038/s41375-018-0229-3. (PMID: 10.1038/s41375-018-0229-330089915)
Zhu Q, Yan L, Liu Q et al (2018) Exome chip analyses identify genes affecting mortality after HLA-matched unrelated-donor blood and marrow transplantation. Blood 131(22):2490–2499. https://doi.org/10.1182/blood-2017-11-817973. (PMID: 10.1182/blood-2017-11-817973296103665981168)
Cristiano S, Leal A, Phallen J et al (2019) Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570(7761):385–389. https://doi.org/10.1038/s41586-019-1272-6. (PMID: 10.1038/s41586-019-1272-6311428406774252)
Che H, Villela D, Dimitriadou E et al (2020) Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genet Med 22(5):962–973. https://doi.org/10.1038/s41436-019-0748-y. (PMID: 10.1038/s41436-019-0748-y32024963)
Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487. https://doi.org/10.1016/s0140-6736(97)02174-0. (PMID: 10.1016/s0140-6736(97)02174-09274585)
Adamek M, Opelz G, Klein K, Morath C, Tran TH (2016) A fast and simple method for detecting and quantifying donor-derived cell-free DNA in sera of solid organ transplant recipients as a biomarker for graft function. Clin Chem Lab Med 54(7):1147–1155. https://doi.org/10.1515/cclm-2015-0622. (PMID: 10.1515/cclm-2015-062226574891)
Snyder TM, Khush KK, Valantine HA, Quake SR (2011) Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci U S A 108(15):6229–6234. https://doi.org/10.1073/pnas.1013924108. (PMID: 10.1073/pnas.1013924108214448043076856)
Agbor-Enoh S, Tunc I, De Vlaminck I et al (2017) Applying rigor and reproducibility standards to assay donor-derived cell-free DNA as a non-invasive method for detection of acute rejection and graft injury after heart transplantation. J Heart Lung Transplant 36(9):1004–1012. https://doi.org/10.1016/j.healun.2017.05.026. (PMID: 10.1016/j.healun.2017.05.026286241397988434)
Van Aelst LN, Summer G, Li S et al (2016) RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection. Am J Transplant 16(1):99–110. https://doi.org/10.1111/ajt.13421. (PMID: 10.1111/ajt.1342126249758)
Zhang A, Wang K, Zhou C et al (2017) Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection. J Heart Lung Transplant 36(2):175–184. https://doi.org/10.1016/j.healun.2016.04.018. (PMID: 10.1016/j.healun.2016.04.01827296836)
Duong Van Huyen JP, Tible M, Gay A et al (2014) MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J 35(45):3194–3202. https://doi.org/10.1093/eurheartj/ehu346. (PMID: 10.1093/eurheartj/ehu34625176944)
Sukma Dewi I, Hollander Z, Lam KK et al (2017) Association of Serum MiR-142-3p and MiR-101-3p levels with acute cellular rejection after heart transplantation. PLoS One 12(1):e0170842. https://doi.org/10.1371/journal.pone.0170842. (PMID: 10.1371/journal.pone.0170842281257295268768)
So JBY, Kapoor R, Zhu F et al (2021) Development and validation of a serum microRNA biomarker panel for detecting gastric cancer in a high-risk population. Gut 70(5):829–837. https://doi.org/10.1136/gutjnl-2020-322065. (PMID: 10.1136/gutjnl-2020-32206533028667)
Patel PC, Hill DA, Ayers CR et al (2014) High-sensitivity cardiac troponin I assay to screen for acute rejection in patients with heart transplant. Circ Heart Fail 7(3):463–469. https://doi.org/10.1161/circheartfailure.113.000697. (PMID: 10.1161/circheartfailure.113.00069724733367)
Tran A, Fixler D, Huang R, Meza T, Lacelle C, Das BB (2016) Donor-specific HLA alloantibodies: impact on cardiac allograft vasculopathy, rejection, and survival after pediatric heart transplantation. J Heart Lung Transplant 35(1):87–91. https://doi.org/10.1016/j.healun.2015.08.008. (PMID: 10.1016/j.healun.2015.08.00826422083)
Clerkin KJ, Farr MA, Restaino SW et al (2017) Donor-specific anti-HLA antibodies with antibody-mediated rejection and long-term outcomes following heart transplantation. J Heart Lung Transplant 36(5):540–545. https://doi.org/10.1016/j.healun.2016.10.016. (PMID: 10.1016/j.healun.2016.10.01627916323)
فهرسة مساهمة: Keywords: Allograft rejection; Endomyocardial biopsy; Graft-versus-host disease (GVHD); Heart failure; Heart transplantation; Major histocompatibility complex (MHC); Piwi-interacting RNA (piRNA); Transfer RNA (tRNA)
تواريخ الأحداث: Date Created: 20230714 Date Completed: 20230717 Latest Revision: 20231117
رمز التحديث: 20231215
DOI: 10.1007/978-1-0716-3346-5_21
PMID: 37450128
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3346-5_21