دورية أكاديمية

Long-term potassium-competitive acid blockers administration causes microbiota changes in rats.

التفاصيل البيبلوغرافية
العنوان: Long-term potassium-competitive acid blockers administration causes microbiota changes in rats.
المؤلفون: Najah H; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA. han4006@med.cornell.edu., Edelmuth RCL; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA.; Hospital Israelita Albert Einstein, São Paulo, Brazil., Riascos MC; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA., Grier A; Microbiome Core Lab of Weill Cornell Medicine, New York, NY, USA., Al Asadi H; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA., Greenberg JA; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA., Miranda I; Laboratory of Comparative Pathology (LCP), Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, The Rockefeller University, New York, NY, USA., Crawford CV; Division of Gastroenterology and Hepatology, Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA., Finnerty BM; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA., Fahey TJ 3rd; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA., Zarnegar R; Division of Endocrine & Minimally Invasive Surgery, Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medical College, 525 East 68th Street, K-836, New York, NY, 10065, USA.
المصدر: Surgical endoscopy [Surg Endosc] 2023 Oct; Vol. 37 (10), pp. 7980-7990. Date of Electronic Publication: 2023 Jul 14.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 8806653 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2218 (Electronic) Linking ISSN: 09302794 NLM ISO Abbreviation: Surg Endosc Subsets: MEDLINE
أسماء مطبوعة: Publication: 1992- : New York : Springer
Original Publication: [Berlin] : Springer International, c1987-
مواضيع طبية MeSH: Gastrointestinal Microbiome* , Helicobacter Infections* , Helicobacter pylori*/physiology, Animals ; Rats ; Anti-Bacterial Agents/therapeutic use ; Drug Therapy, Combination ; Potassium/pharmacology ; Potassium/therapeutic use ; Prospective Studies ; Proton Pump Inhibitors/therapeutic use ; Pyrroles/pharmacology ; Pyrroles/therapeutic use ; Rats, Wistar
مستخلص: Background: Vonoprazan is a new potassium-competitive acid blocker (P-CAB) that was recently approved by the FDA. It is associated with a fast onset of action and a longer acid inhibition time. Vonoprazan-containing therapy for helicobacter pylori eradication is highly effective and several studies have demonstrated that a vonoprazan-antibiotic regimen affects gut microbiota. However, the impact of vonoprazan alone on gut microbiota is still unclear.Please check and confirm the authors (Maria Cristina Riascos, Hala Al Asadi) given name and family name are correct. Also, kindly confirm the details in the metadata are correct.Yes they are correct.  METHODS: We conducted a prospective randomized 12-week experimental trial with 18 Wistar rats. Rats were randomly assigned to one of 3 groups: (1) drinking water as negative control group, (2) oral vonoprazan (4 mg/kg) for 12 weeks, and (3) oral vonoprazan (4 mg/kg) for 4 weeks, followed by 8 weeks off vonoprazan. To investigate gut microbiota, we carried out a metagenomic shotgun sequencing of fecal samples at week 0 and week 12.Please confirm the inserted city and country name is correct for affiliation 2.Yes it's correct.
Results: For alpha diversity metrics at week 12, both long and short vonoprazan groups had lower Pielou's evenness index than the control group (p = 0.019); however, observed operational taxonomic units (p = 0.332) and Shannon's diversity index (p = 0.070) were not statistically different between groups. Beta diversity was significantly different in the three groups, using Bray-Curtis (p = 0.003) and Jaccard distances (p = 0.002). At week 12, differences in relative abundance were observed at all levels. At phylum level, short vonoprazan group had less of Actinobacteria (log fold change = - 1.88, adjusted p-value = 0.048) and Verrucomicrobia (lfc = - 1.76, p = 0.009).Please check and confirm that the author (Ileana Miranda) and their respective affiliation 3 details have been correctly identified and amend if necessary.Yes it's correct. At the genus level, long vonoprazan group had more Bacteroidales (lfc = 5.01, p = 0.021) and Prevotella (lfc = 7.79, p = 0.001). At family level, long vonoprazan group had more Lactobacillaceae (lfc = 0.97, p = 0.001), Prevotellaceae (lfc = 8.01, p < 0.001), and less Erysipelotrichaceae (lfc = - 2.9, p = 0.029).
Conclusion: This study provides evidence that vonoprazan impacts the gut microbiota and permits a precise delineation of the composition and relative abundance of the bacteria at all different taxonomic levels.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Sachs G, Shin JM, Vagin O, Lambrecht N, Yakubov I, Munson K (2007) The gastric H, K atpase as a drug target: past, present, and future. J Clin Gastroenterol 41:S226–S242. https://doi.org/10.1097/MCG.0b013e31803233b7. (PMID: 10.1097/MCG.0b013e31803233b7175755282860960)
Chey WD, Mody RR, Izat E (2010) Patient and physician satisfaction with proton pump inhibitors (PPIs): are there opportunities for improvement? Dig Dis Sci 55:3415–3422. https://doi.org/10.1007/s10620-010-1209-2. (PMID: 10.1007/s10620-010-1209-220397047)
Luo H-J, Deng W-Q, Zou K (2014) Protonated form: the potent form of potassium-competitive acid blockers. PLoS ONE 9:97688. https://doi.org/10.1371/journal.pone.0097688. (PMID: 10.1371/journal.pone.0097688)
Sachs G, Shin JM, Hunt R (2010) Novel approaches to inhibition of gastric acid secretion. Curr Gastroenterol Rep 12:437–447. https://doi.org/10.1007/s11894-010-0149-5. (PMID: 10.1007/s11894-010-0149-5209247272974194)
Shin JM, Inatomi N, Munson K, Strugatsky D, Tokhtaeva E, Vagin O, Sachs G (2011) Characterization of a novel potassium-competitive acid blocker of the Gastric H, K-ATPase, 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1 H-pyrrol-3-yl]-N-ethylmethanamine monofumarate (TAK-438). J Pharmacol Exp Ther 339:412–420. https://doi.org/10.1124/jpet.111.185314. (PMID: 10.1124/jpet.111.185314218282613199995)
Garnock-Jones KP (2015) Vonoprazan: first global approval. Drugs 75:439–443. https://doi.org/10.1007/s40265-015-0368-z. (PMID: 10.1007/s40265-015-0368-z25744862)
Chen F, Jiang H, Xu J, Wang S, Meng D, Geng P, Dai D, Zhou Q, Zhou Y (2020) In vitro and in vivo rat model assessments of the effects of vonoprazan on the pharmacokinetics of venlafaxine. DDDT 14:4815–4824. https://doi.org/10.2147/DDDT.S276704. (PMID: 10.2147/DDDT.S276704332040677667002)
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. https://doi.org/10.1038/nature11550. (PMID: 10.1038/nature11550229722953577372)
Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690. https://doi.org/10.1038/ni.2608. (PMID: 10.1038/ni.2608237787964083503)
Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a. (PMID: 10.1038/4441022a17183309)
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336. https://doi.org/10.1038/nature10213. (PMID: 10.1038/nature10213216777493298082)
Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y (2022) The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol 12:733992. https://doi.org/10.3389/fcimb.2022.733992. (PMID: 10.3389/fcimb.2022.733992352739218902753)
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC (2022) Dysbiosis of gut microbiota from the perspective of the gut-brain axis: role in the provocation of neurological disorders. Metabolites 12:1064. https://doi.org/10.3390/metabo12111064. (PMID: 10.3390/metabo12111064363551479692419)
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X (2022) Dysbiosis: the first hit for digestive system cancer. Front Physiol 13:1040991. https://doi.org/10.3389/fphys.2022.1040991. (PMID: 10.3389/fphys.2022.1040991364832969723259)
Hori Y, Matsukawa J, Takeuchi T, Nishida H, Kajino M, Inatomi N (2011) A study comparing the antisecretory effect of TAK-438, a novel potassium-competitive acid blocker, with lansoprazole in animals. J Pharmacol Exp Ther 337:797–804. https://doi.org/10.1124/jpet.111.179556. (PMID: 10.1124/jpet.111.17955621411494)
Blanco-Miguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD, Thomas AM, Piccinno G, Piperni E, Punčochář M, Valles-Colomer M, Tett A, Giordano F, Davies R, Wolf J, Berry SE, Spector TD, Franzosa EA, Pasolli E, Asnicar F, Huttenhower C, Segata N (2022) Extending and improving metagenomic taxonomic profiling with uncharacterized species with MetaPhlAn 4. Bioinformatics 15:1–2.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9. (PMID: 10.1038/s41587-019-0209-9313412887015180)
Lin H, Peddada SD (2020) Analysis of compositions of microbiomes with bias correction. Nat Commun 11:3514. https://doi.org/10.1038/s41467-020-17041-7. (PMID: 10.1038/s41467-020-17041-7326655487360769)
Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK, Menni C, Bell JT, Spector TD, Steves CJ (2018) Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun 9:2655. https://doi.org/10.1038/s41467-018-05184-7. (PMID: 10.1038/s41467-018-05184-7299854016037668)
Jackson MA, Goodrich JK, Maxan M-E, Freedberg DE, Abrams JA, Poole AC, Sutter JL, Welter D, Ley RE, Bell JT, Spector TD, Steves CJ (2016) Proton pump inhibitors alter the composition of the gut microbiota. Gut 65:749–756. https://doi.org/10.1136/gutjnl-2015-310861. (PMID: 10.1136/gutjnl-2015-31086126719299)
MetaHIT consortium, Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Yvonne Voigt A, Vestergaard H, Hercog R, Igor Costea P, Roat Kultima J, Li J, Jørgensen T, Levenez F, Dore J, Bjørn Nielsen H, Brunak S, Raes J, Hansen T, Wang J, Dusko Ehrlich S, Bork P, Pedersen O (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266. https://doi.org/10.1038/nature15766. (PMID: 10.1038/nature157664681099)
Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561. https://doi.org/10.1073/pnas.1000087107. (PMID: 10.1073/pnas.100008710720847294)
Imhann F, Vich Vila A, Bonder MJ, Lopez Manosalva AG, Koonen DPY, Fu J, Wijmenga C, Zhernakova A, Weersma RK (2017) The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes 8:351–358. https://doi.org/10.1080/19490976.2017.1284732. (PMID: 10.1080/19490976.2017.1284732281180835570416)
Hojo M, Asahara T, Nagahara A, Takeda T, Matsumoto K, Ueyama H, Matsumoto K, Asaoka D, Takahashi T, Nomoto K, Yamashiro Y, Watanabe S (2018) Gut Microbiota Composition Before and After Use of Proton Pump Inhibitors. Dig Dis Sci 63:2940–2949. https://doi.org/10.1007/s10620-018-5122-4. (PMID: 10.1007/s10620-018-5122-4297969116182435)
Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJM, Dijkstra G, Franke L, Xavier RJ, Jonkers D, Wijmenga C, Weersma RK, Zhernakova A (2016) Proton pump inhibitors affect the gut microbiome. Gut 65:740–748. https://doi.org/10.1136/gutjnl-2015-310376. (PMID: 10.1136/gutjnl-2015-31037626657899)
Yang Y-CSH, Chang H-W, Lin I-H, Chien L-N, Wu M-J, Liu Y-R, Chu PG, Xie G, Dong F, Jia W, Chang VHS, Yen Y (2020) Long-term proton pump inhibitor administration caused physiological and microbiota changes in rats. Sci Rep 10:866. https://doi.org/10.1038/s41598-020-57612-8. (PMID: 10.1038/s41598-020-57612-8319649416972906)
Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort study, Weersma RK, Feskens EJM, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569. https://doi.org/10.1126/science.aad3369. (PMID: 10.1126/science.aad3369271260405240844)
Ashida K, Sakurai Y, Hori T, Kudou K, Nishimura A, Hiramatsu N, Umegaki E, Iwakiri K (2016) Randomised clinical trial: vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the healing of erosive oesophagitis. Aliment Pharmacol Ther 43:240–251. https://doi.org/10.1111/apt.13461. (PMID: 10.1111/apt.1346126559637)
Hori Y, Imanishi A, Matsukawa J, Tsukimi Y, Nishida H, Arikawa Y, Hirase K, Kajino M, Inatomi N (2010) 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1 H -pyrrol-3-yl]- N-methylmethanamine Monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. J Pharmacol Exp Ther 335:231–238. https://doi.org/10.1124/jpet.110.170274. (PMID: 10.1124/jpet.110.17027420624992)
Kim B-R, Shin J, Guevarra RB, Lee JH, Kim DW, Seol K-H, Lee J-H, Kim HB, Isaacson RE (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27:2089–2093. https://doi.org/10.4014/jmb.1709.09027. (PMID: 10.4014/jmb.1709.0902729032640)
Hu Y, Xu X, Ouyang Y, He C, Li N, Xie C, Peng C, Zhu Z, Xie Y, Shu X, Lu N, Zhu Y (2022) Analysis of oral microbiota alterations induced by Helicobacter pylori infection and vonoprazan-amoxicillin dual therapy for Helicobacter pylori eradication. Helicobacter. https://doi.org/10.1111/hel.12923. (PMID: 10.1111/hel.12923364362029541209)
Suzuki S, Gotoda T, Takano C, Horii T, Sugita T, Ogura K, Ichijima R, Kusano C, Ikehara H (2021) Long term impact of vonoprazan-based Helicobacter pylori treatment on gut microbiota and its relation to post-treatment body weight changes. Helicobacter. https://doi.org/10.1111/hel.12851. (PMID: 10.1111/hel.1285134486195)
Kakiuchi T, Yamamoto K, Imamura I, Hashiguchi K, Kawakubo H, Yamaguchi D, Fujioka Y, Okuda M (2021) Gut microbiota changes related to Helicobacter pylori eradication with vonoprazan containing triple therapy among adolescents: a prospective multicenter study. Sci Rep 11:755. https://doi.org/10.1038/s41598-020-80802-3. (PMID: 10.1038/s41598-020-80802-3334369537804423)
Zhang M, Yang X-J (2016) Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. WJG 22:8905. https://doi.org/10.3748/wjg.v22.i40.8905. (PMID: 10.3748/wjg.v22.i40.8905278333815083795)
Horii T, Suzuki S, Takano C, Shibuya H, Ichijima R, Kusano C, Ikehara H, Gotoda T (2021) Lower impact of vonoprazan–amoxicillin dual therapy on gut microbiota for Helicobacter pylori eradication. J Gastro Hepatol 36:3314–3321. https://doi.org/10.1111/jgh.15572. (PMID: 10.1111/jgh.15572)
Cornejo-Pareja I, Martín-Núñez G, Roca-Rodríguez M, Cardona F, Coin-Aragüez L, Sánchez-Alcoholado L, Gutiérrez-Repiso C, Muñoz-Garach A, Fernández-García J, Moreno-Indias I, Tinahones F (2019) H. pylori eradication treatment alters gut microbiota and GLP-1 secretion in humans. JCM 8:451. https://doi.org/10.3390/jcm8040451. (PMID: 10.3390/jcm8040451309873266517938)
Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M, Kinnunen E, Murros K, Auvinen P (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. https://doi.org/10.1002/mds.26069. (PMID: 10.1002/mds.2606925476529)
Sanada K, Nakajima S, Kurokawa S, Barceló-Soler A, Ikuse D, Hirata A, Yoshizawa A, Tomizawa Y, Salas-Valero M, Noda Y, Mimura M, Iwanami A, Kishimoto T (2020) Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J Affect Disord 266:1–13. https://doi.org/10.1016/j.jad.2020.01.102. (PMID: 10.1016/j.jad.2020.01.10232056863)
Barandouzi ZA, Starkweather AR, Henderson WA, Gyamfi A, Cong XS (2020) Altered Composition of gut microbiota in depression: a systematic review. Front Psychiatry 11:541. https://doi.org/10.3389/fpsyt.2020.00541. (PMID: 10.3389/fpsyt.2020.00541325875377299157)
Reeves AE, Theriot CM, Bergin IL, Huffnagle GB, Schloss PD, Young VB (2011) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes 2:145–158. https://doi.org/10.4161/gmic.2.3.16333. (PMID: 10.4161/gmic.2.3.16333218043573225775)
فهرسة مساهمة: Keywords: Diversity; Experimental model; Gut microbiome; Gut microbiota; Vonoprazan
المشرفين على المادة: 0 (1-(5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl)-N-methylmethanamine)
0 (Anti-Bacterial Agents)
RWP5GA015D (Potassium)
0 (Proton Pump Inhibitors)
0 (Pyrroles)
تواريخ الأحداث: Date Created: 20230714 Date Completed: 20231009 Latest Revision: 20240323
رمز التحديث: 20240323
DOI: 10.1007/s00464-023-10269-6
PMID: 37452210
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2218
DOI:10.1007/s00464-023-10269-6