دورية أكاديمية

Construction of metal-organic framework-based multienzyme system for L-tert-leucine production.

التفاصيل البيبلوغرافية
العنوان: Construction of metal-organic framework-based multienzyme system for L-tert-leucine production.
المؤلفون: Wang R; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China., Jia J; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China., Liu X; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China., Chen Y; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China., Xu Q; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China. xu_qing@njnu.edu.cn., Xue F; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China. xuef2020@njnu.edu.cn.
المصدر: Bioprocess and biosystems engineering [Bioprocess Biosyst Eng] 2023 Sep; Vol. 46 (9), pp. 1365-1373. Date of Electronic Publication: 2023 Jul 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101088505 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-7605 (Electronic) Linking ISSN: 16157591 NLM ISO Abbreviation: Bioprocess Biosyst Eng Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, Germany : Springer-Verlag, 2001-
مواضيع طبية MeSH: Metal-Organic Frameworks*, Humans ; Leucine Dehydrogenase/chemistry ; Leucine/chemistry ; Glucose Dehydrogenases
مستخلص: Chiral compounds are important drug intermediates that play a critical role in human life. Herein, we report a facile method to prepare multi-enzyme nano-devices with high catalytic activity and stability. The self-assemble molecular binders SpyCatcher and SpyTag were fused with leucine dehydrogenase and glucose dehydrogenase to produce sc-LeuDH (SpyCatcher-fused leucine dehydrogenase) and GDH-st (SpyTag-fused glucose dehydrogenase), respectively. After assembling, the cross-linked enzymes LeuDH-GDH were formed. The crosslinking enzyme has good pH stability and temperature stability. The coenzyme cycle constant of LeuDH-GDH was always higher than that of free double enzymes. The yield of L-tert-leucine synthesis by LeuDH-GDH was 0.47 times higher than that by free LeuDH and GDH. To further improve the enzyme performance, the cross-linked LeuDH-GDH was immobilized on zeolite imidazolate framework-8 (ZIF-8) via bionic mineralization, forming LeuDH-GDH @ZIF-8. The created co-immobilized enzymes showed even better pH stability and temperature stability than the cross-linked enzymes, and LeuDH-GDH@ZIF-8 retains 70% relative conversion rate in the first four reuses. In addition, the yield of LeuDH-GDH@ZIF-8 was 0.62 times higher than that of LeuDH-GDH, and 1.38 times higher than that of free double enzyme system. This work provides a novel method for developing multi-enzyme nano-device, and the ease of operation of this method is appealing for the construction of other multi-enzymes @MOF systems for the applications in the kinds of complex environment.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
التعليقات: Erratum in: Bioprocess Biosyst Eng. 2023 Aug 2;:. (PMID: 37528274)
References: Gladiali S (2007) Guidelines and methodologies in asymmetric synthesis and catalysis. C R Chim 10(3):220–231. (PMID: 10.1016/j.crci.2007.01.003)
Luo W et al (2020) Cloning and expression of a novel leucine dehydrogenase: characterization and l-tert-Leucine production. Front Bioeng Biotechnol 8:186. (PMID: 10.3389/fbioe.2020.00186322966847136578)
Jiang W, Fang B (2020) Synthesizing chiral drug intermediates by biocatalysis. Appl Biochem Biotechnol 192(1):146–179. (PMID: 10.1007/s12010-020-03272-332323141)
Solano DM et al (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Biores Technol 115:196–207. (PMID: 10.1016/j.biortech.2011.11.131)
Menzel A et al (2004) From enzymes to “designer bugs” in reductive amination: a new process for the synthesis of L-tert-leucine using a whole cell-catalyst. Eng Life Sci 4(6):573–576. (PMID: 10.1002/elsc.200402162)
Bommarius AS, Schwarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. J Mol Catal B Enzym 5(1–4):1–11. (PMID: 10.1016/S1381-1177(98)00009-5)
Young Hong E et al (2010) Asymmetric synthesis of L-tert-leucine and L-3-hydroxyadamantylglycine using branched chain aminotransferase. J Mol Catal B Enzym 66(1–2):228–233. (PMID: 10.1016/j.molcatb.2010.05.014)
Jin J-Z, Chang D-L, Zhang J (2011) Discovery and application of new bacterial strains for asymmetric synthesis of L-tert-butyl leucine in high enantioselectivity. Appl Biochem Biotechnol 164(3):376–385. (PMID: 10.1007/s12010-010-9141-721153891)
Liu W et al (2014) Efficient synthesis of l-tert-leucine through reductive amination using leucine dehydrogenase and formate dehydrogenase coexpressed in recombinant E. coli. Biochem Eng J 91:204–209. (PMID: 10.1016/j.bej.2014.08.003)
Clive DL, Etkin N (1994) Synthesis of α-amino acids by addition of putative azido radicals to α-methoxy acrylonitriles derived from aldehydes and ketones. Tetrahedron Lett 35(16):2459–2462. (PMID: 10.1016/S0040-4039(00)77143-7)
Boesten WH et al (2001) Asymmetric Strecker synthesis of α-amino acids via a crystallization-induced asymmetric transformation using (R)-phenylglycine amide as chiral auxiliary. Org Lett 3(8):1121–1124. (PMID: 10.1021/ol007042c11348174)
Drauz K, Gröger H, May O (2012) Enzyme catalysis in organic synthesis, 3 volume set, vol 1. John Wiley & Sons, New Jersey. (PMID: 10.1002/9783527639861)
Yang X et al (2016) High efficient co-expression of leucine dehydrogenase and glucose dehydrogenase in Escherichia coli. Acta Microbiol Sin 56(11):1709–1718.
Shu-ting LI, Min W (2009) Research on conditions of L-tert-leucine biosynthesis by genetically engineered Escherichia coli. Pharm Biotechnol 16(3):202–206.
Bülow L, Ljungcrantz P, Mosbach K (1985) Preparation of a soluble bifunctional enzyme by gene fusion. Bio/Technology 3(9):821–823.
Fan Z et al (2009) Multimeric hemicellulases facilitate biomass conversion. Appl Environ Microbiol 75(6):1754–1757. (PMID: 10.1128/AEM.02181-08191511802655479)
Yerabham AS et al (2013) Revisiting disrupted-in-schizophrenia 1 as a scaffold protein. Biol Chem 394(11):1425–1437. (PMID: 10.1515/hsz-2013-017823832957)
Hyeon JE, Jeon SD, Han SO (2013) Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv 31(6):936–944. (PMID: 10.1016/j.biotechadv.2013.03.00923563098)
Zakeri B et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci 109(12):E690–E697. (PMID: 10.1073/pnas.1115485109223663173311370)
Hagan RM et al (2010) NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Angew Chem 122(45):8599–8603. (PMID: 10.1002/ange.201004340)
Banerjee A, Howarth M (2018) Nanoteamwork: covalent protein assembly beyond duets towards protein ensembles and orchestras. Curr Opin Biotechnol 51:16–23. (PMID: 10.1016/j.copbio.2017.10.00629172131)
Reddington SC, Howarth M (2015) Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol 29:94–99. (PMID: 10.1016/j.cbpa.2015.10.00226517567)
Liu D et al (2017) Topology engineering of proteins in vivo using genetically encoded, mechanically interlocking SpyX modules for enhanced stability. ACS Cent Sci 3(5):473–481. (PMID: 10.1021/acscentsci.7b00104285732105445526)
Liu L et al (2018) Construction of intracellular self-assembled multienzyme complex by SpyTag/SpyCatcher to achieve efficient biosynthesis. China Biotechnol 38(7):75–82.
Dordick JS (1992) Designing enzymes for use in organic solvents. Biotechnol Prog 8(4):259–267. (PMID: 10.1021/bp00016a0011368449)
Cantone S et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42(15):6262–6276. (PMID: 10.1039/c3cs35464d23525282)
Bailey JB et al (2017) Synthetic modularity of protein–metal–organic frameworks. J Am Chem Soc 139(24):8160–8166. (PMID: 10.1021/jacs.7b0120228590729)
Pilgrim BS, Champness NR (2020) Metal-organic frameworks and metal-organic cages–a perspective. Chem Plus Chem 85(8):1842–1856. (PMID: 32833342)
Bai W et al (2019) Ultrathin 2D metal–organic framework (nanosheets and nanofilms)-based x D–2D hybrid nanostructures as biomimetic enzymes and supercapacitors. J Mater Chem A 7(15):9086–9098. (PMID: 10.1039/C9TA00311H)
Chen GS et al (2020) Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement. Angew Chem Int Edn 59(33):13947–13954. (PMID: 10.1002/anie.202005529)
Liang W et al (2021) Metal–organic framework-based enzyme biocomposites. Chem Rev 121(3):1077–1129. (PMID: 10.1021/acs.chemrev.0c0102933439632)
Liang K et al (2017) Biomimetic mineralization of metal–organic frameworks around polysaccharides. Chem Commun 53(7):1249–1252. (PMID: 10.1039/C6CC09680H)
Gao X et al (2021) Hierarchically porous magnetic Fe 3 O 4 /Fe-MOF used as an effective platform for enzyme immobilization: a kinetic and thermodynamic study of structure-activity. Catal Sci Technol 11(7):2446–2455. (PMID: 10.1039/D0CY02146F)
Liao F-S et al (2017) Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. J Am Chem Soc 139(19):6530–6533. (PMID: 10.1021/jacs.7b0179428460166)
Qi B, Luo J, Wan Y (2018) Immobilization of cellulase on a core-shell structured metal-organic framework composites: better inhibitors tolerance and easier recycling. Biores Technol 268:577–582. (PMID: 10.1016/j.biortech.2018.07.115)
Liang K et al (2015) Biomimetic mineralization of metal–organic frameworks as protective coatings for biomacromolecules. Nat Commun 6(1):1–8. (PMID: 10.1038/ncomms8240)
Akimbekov Z et al (2017) Experimental and theoretical evaluation of the stability of true MOF polymorphs explains their mechanochemical interconversions. J Am Chem Soc 139(23):7952–7957. (PMID: 10.1021/jacs.7b0314428520416)
معلومات مُعتمدة: 2021M691624 China Postdoctoral Science Foundation; 21878154 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Glucose dehydrogenase; L-tert-Leucine; Leucine dehydrogenase; Metal–organic framework; Protein crosslinking
المشرفين على المادة: EC 1.4.1.9 (Leucine Dehydrogenase)
0 (Metal-Organic Frameworks)
471-50-1 (2-amino-3,3-dimethylbutanoic acid)
GMW67QNF9C (Leucine)
EC 1.1.1.- (Glucose Dehydrogenases)
تواريخ الأحداث: Date Created: 20230715 Date Completed: 20230808 Latest Revision: 20230808
رمز التحديث: 20231215
DOI: 10.1007/s00449-023-02900-6
PMID: 37452834
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-7605
DOI:10.1007/s00449-023-02900-6