دورية أكاديمية

The predictive power of phylogeny on growth rates in soil bacterial communities.

التفاصيل البيبلوغرافية
العنوان: The predictive power of phylogeny on growth rates in soil bacterial communities.
المؤلفون: Walkup J; Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA., Dang C; Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA., Mau RL; Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA., Hayer M; Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA., Schwartz E; Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA.; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA., Stone BW; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA., Hofmockel KS; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA., Koch BJ; Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA.; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA., Purcell AM; Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA.; Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA., Pett-Ridge J; Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA.; University of California Merced, Life & Environmental Sciences Department, Merced, CA, 95343, USA., Wang C; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, LN, China., Hungate BA; Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA.; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA., Morrissey EM; Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA. ember.morrissey@mail.wvu.edu.
المصدر: ISME communications [ISME Commun] 2023 Jul 15; Vol. 3 (1), pp. 73. Date of Electronic Publication: 2023 Jul 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 9918205372406676 Publication Model: Electronic Cited Medium: Internet ISSN: 2730-6151 (Electronic) Linking ISSN: 27306151 NLM ISO Abbreviation: ISME Commun Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: 3 2024- : Oxford : Oxford University Press
Original Publication: [London] : Springer Nature on behalf of the International Society for Microbial Ecology, [2021]-
مستخلص: Predicting ecosystem function is critical to assess and mitigate the impacts of climate change. Quantitative predictions of microbially mediated ecosystem processes are typically uninformed by microbial biodiversity. Yet new tools allow the measurement of taxon-specific traits within natural microbial communities. There is mounting evidence of a phylogenetic signal in these traits, which may support prediction and microbiome management frameworks. We investigated phylogeny-based trait prediction using bacterial growth rates from soil communities in Arctic, boreal, temperate, and tropical ecosystems. Here we show that phylogeny predicts growth rates of soil bacteria, explaining an average of 31%, and up to 58%, of the variation within ecosystems. Despite limited overlap in community composition across these ecosystems, shared nodes in the phylogeny enabled ancestral trait reconstruction and cross-ecosystem predictions. Phylogenetic relationships could explain up to 38% (averaging 14%) of the variation in growth rates across the highly disparate ecosystems studied. Our results suggest that shared evolutionary history contributes to similarity in the relative growth rates of related bacteria in the wild, allowing phylogeny-based predictions to explain a substantial amount of the variation in taxon-specific functional traits, within and across ecosystems.
(© 2023. The Author(s).)
References: Schimel J, Schaeffer S. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:348. (PMID: 23055998345843410.3389/fmicb.2012.00348)
Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012;109:35–47. (PMID: 10.1007/s10533-011-9641-8)
Green JL, Bohannan BJM, Whitaker RJ. Microbial biogeography: from taxonomy to traits. Science. 2008;320:1039–43. (PMID: 1849728810.1126/science.1153475)
Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nature Geosci. 2010;3:336–40. (PMID: 10.1038/ngeo846)
Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models. Glob Biogeochem Cycles. 2015;29:1782–800. (PMID: 10.1002/2015GB005188)
McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol Evol. 2006;21:178–85. (PMID: 1670108310.1016/j.tree.2006.02.002)
Westoby M, Wright IJ. Land-plant ecology on the basis of functional traits. Trends Ecol Evol. 2006;21:261–8. (PMID: 1669791210.1016/j.tree.2006.02.004)
Messier J, McGill BJ, Lechowicz MJ. How do traits vary across ecological scales? A case for trait-based ecology: How do traits vary across ecological scales? Ecol Lett. 2010;13:838–48. (PMID: 2048258210.1111/j.1461-0248.2010.01476.x)
Lajoie G, Kembel SW. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 2019;27:814–23. (PMID: 3129640610.1016/j.tim.2019.06.003)
Romillac N, Santorufo L. Transferring concepts from plant to microbial ecology: a framework proposal to identify relevant bacterial functional traits. Soil Biol Biochem. 2021;162:108415. (PMID: 10.1016/j.soilbio.2021.108415)
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017;35:833–44. (PMID: 2889820710.1038/nbt.3935)
Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol. 2016;34:1256–63. (PMID: 27819664553856710.1038/nbt.3704)
Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7. (PMID: 10.1038/nmicrobiol.2016.160)
Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. Genome streamlining and the elemental costs of growth. Trends Ecol Evol. 2010;25:75–80. (PMID: 1979684210.1016/j.tree.2009.08.004)
Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu XJA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72. (PMID: 31053828677610810.1038/s41396-019-0422-z)
Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30. (PMID: 2123385010.1038/nrmicro2504)
Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, Van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81. (PMID: 26296731459286410.1128/AEM.02280-15)
Morrissey EM, Mau RL, Hayer M, Liu XJA, Schwartz E, Dijkstra P, et al. Evolutionary history constrains microbial traits across environmental variation. Nat Ecol Evol. 2019;3:1064–9. (PMID: 3120928910.1038/s41559-019-0918-y)
Wang C, Morrissey EM, Mau RL, Hayer M, Piñeiro J, Mack MC, et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 2021;15:2738–47. (PMID: 33782569839774910.1038/s41396-021-00959-1)
Finley BK, Mau RL, Hayer M, Stone BW, Morrissey EM, Koch BJ, et al. Soil minerals affect taxon-specific bacterial growth. ISME J. 2022;16:1318–26. (PMID: 3493102810.1038/s41396-021-01162-y)
Dang C, Walkup JGV, Hungate BA, Franklin RB, Schwartz E, Morrissey EM. Phylogenetic organization in the assimilation of chemically distinct substrates by soil bacteria. Environ Microbiol. 2022;24:357–69. (PMID: 3481186510.1111/1462-2920.15843)
Coskun ÖK, Özen V, Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59. (PMID: 30783213677600710.1038/s41396-019-0373-4)
Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29. (PMID: 3025817210.1038/s41396-018-0279-6)
Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8. (PMID: 2323529010.1038/ismej.2012.160)
Goberna M, Navarro‐Cano JA, Valiente‐Banuet A, García C, Verdú M. Abiotic stress tolerance and competition‐related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett. 2014;17:1191–201.
Goberna M, Verdú M. Predicting microbial traits with phylogenies. ISME J. 2016;10:959–67. (PMID: 2637140610.1038/ismej.2015.171)
Holland BR, Ketelaar-Jones S, O’Mara AR, Woodhams MD, Jordan GJ. Accuracy of ancestral state reconstruction for non-neutral traits. Sci Rep. 2020;10:7644. (PMID: 32376845720312010.1038/s41598-020-64647-4)
Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Phylogenetic organization of bacterial activity. ISME J. 2016;10:2336–40. (PMID: 26943624498931910.1038/ismej.2016.28)
Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol. 2018;20:1112–9. (PMID: 2941149610.1111/1462-2920.14051)
Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:214. (PMID: 26941732476479510.3389/fmicb.2016.00214)
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl Acids Res. 2014;42:D643–8. (PMID: 2429364910.1093/nar/gkt1209)
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004. (PMID: 3014850310.1038/nbt.4229)
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7. (PMID: 3006905110.1038/s41586-018-0386-6)
Alteio LV, Séneca J, Canarini A, Angel R, Jansa J, Guseva K, et al. A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biol Biochem. 2021;160:108357. (PMID: 10.1016/j.soilbio.2021.108357)
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. (PMID: 2070969110.1093/bioinformatics/btq461)
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6. (PMID: 23193283353111210.1093/nar/gks1219)
Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45. (PMID: 12778543)
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods Ecol Evol. 2012;3:217–23. (PMID: 10.1111/j.2041-210X.2011.00169.x)
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. https://www.R-project.org/ .
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4. (PMID: 2039528510.1093/bioinformatics/btq166)
Goolsby EW, Bruggeman J, Ané C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation. Methods Ecol Evol. 2017;8:22–7. (PMID: 10.1111/2041-210X.12612)
Větrovský T, Baldrian P. The Variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923. (PMID: 23460914358390010.1371/journal.pone.0057923)
Westoby M, Nielsen DA, Gillings MR, Litchman E, Madin JS, Paulsen IT, et al. Cell size, genome size, and maximum growth rate are near‐independent dimensions of ecological variation across bacteria and archaea. Ecol Evol. 2021;11:3956–76. (PMID: 33976787809375310.1002/ece3.7290)
Freckleton RP, Harvey PH, Pagel M. Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat. 2002;160:712–26. (PMID: 1870746010.1086/343873)
Penone C, Davidson AD, Shoemaker KT, Di Marco M, Rondinini C, Brooks TM, et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol Evol.;2014;5:961–70.
Swenson NG. Phylogenetic imputation of plant functional trait databases. Ecography. 2014;37:105–10. (PMID: 10.1111/j.1600-0587.2013.00528.x)
Swenson NG, Weiser MD, Mao L, Araújo MB, Diniz-Filho JAF, Kollmann J, et al. Phylogeny and the prediction of tree functional diversity across novel continental settings: phylogenetic imputation. Glob Ecol Biogeogr. 2017;26:553–62. (PMID: 10.1111/geb.12559)
Jetz W, Freckleton RP. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Phil Trans R Soc B. 2015;370:20140016. (PMID: 25561677429043010.1098/rstb.2014.0016)
González-del-Pliego P, Freckleton RP, Edwards DP, Koo MS, Scheffers BR, Pyron RA, et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr Biol. 2019;29:1557–63.e3. (PMID: 3106371610.1016/j.cub.2019.04.005)
Fulthorpe RR, Roesch LFW, Riva A, Triplett EW. Distantly sampled soils carry few species in common. ISME J. 2008;2:901–10. (PMID: 1852841310.1038/ismej.2008.55)
Parins-Fukuchi C. Use of continuous traits can improve morphological phylogenetics. Syst Biol. 2018;67:328–39. (PMID: 2894590610.1093/sysbio/syx072)
Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Change. 2018;8:885–9. (PMID: 10.1038/s41558-018-0259-x)
معلومات مُعتمدة: DE-SC0020172 U.S. Department of Energy (DOE); DE- SC0016207 U.S. Department of Energy (DOE); DE- SC0016207 U.S. Department of Energy (DOE); DE- SC0016207 U.S. Department of Energy (DOE); DE-SC0020172 U.S. Department of Energy (DOE); DE- SC0016207 U.S. Department of Energy (DOE); SCW1679 U.S. Department of Energy (DOE); SCW1632 U.S. Department of Energy (DOE); 2114570 National Science Foundation (NSF)
تواريخ الأحداث: Date Created: 20230715 Latest Revision: 20231108
رمز التحديث: 20231108
مُعرف محوري في PubMed: PMC10349831
DOI: 10.1038/s43705-023-00281-1
PMID: 37454187
قاعدة البيانات: MEDLINE
الوصف
تدمد:2730-6151
DOI:10.1038/s43705-023-00281-1