دورية أكاديمية

Whole-Body Metabolism and the Musculoskeletal Impacts of Targeting Activin A and Myostatin in Severe Osteogenesis Imperfecta.

التفاصيل البيبلوغرافية
العنوان: Whole-Body Metabolism and the Musculoskeletal Impacts of Targeting Activin A and Myostatin in Severe Osteogenesis Imperfecta.
المؤلفون: Omosule CL; Department of Biochemistry University of Missouri Columbia Missouri USA., Joseph D; Department of Biochemistry University of Missouri Columbia Missouri USA., Weiler B; Department of Biochemistry University of Missouri Columbia Missouri USA., Gremminger VL; Department of Biochemistry University of Missouri Columbia Missouri USA., Silvey S; Department of Biochemistry University of Missouri Columbia Missouri USA., Lafaver BN; Department of Biochemistry University of Missouri Columbia Missouri USA., Jeong Y; Department of Biochemistry University of Missouri Columbia Missouri USA., Kleiner S; Regeneron Pharmaceuticals New York USA., Phillips CL; Department of Biochemistry University of Missouri Columbia Missouri USA.; Department of Child Health University of Missouri Columbia Missouri USA.
المصدر: JBMR plus [JBMR Plus] 2023 May 07; Vol. 7 (7), pp. e10753. Date of Electronic Publication: 2023 May 07 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 101707013 Publication Model: eCollection Cited Medium: Internet ISSN: 2473-4039 (Electronic) Linking ISSN: 24734039 NLM ISO Abbreviation: JBMR Plus Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: 2024- : Oxford : Oxford University Press
Original Publication: [Chichester, West Sussex, UK] : John Wiley & Sons, [2017]-
مستخلص: Mutations in the COL1A1 and COL1A2 genes, which encode type I collagen, are present in around 85%-90% of osteogenesis imperfecta (OI) patients. Because type I collagen is the principal protein composition of bones, any changes in its gene sequences or synthesis can severely affect bone structure. As a result, skeletal deformity and bone frailty are defining characteristics of OI. Homozygous oim/oim mice are utilized as models of severe progressive type III OI. Bone adapts to external forces by altering its mass and architecture. Previous attempts to leverage the relationship between muscle and bone involved using a soluble activin receptor type IIB-mFc (sActRIIB-mFc) fusion protein to lower circulating concentrations of activin A and myostatin. These two proteins are part of the TGF-β superfamily that regulate muscle and bone function. While this approach resulted in increased muscle masses and enhanced bone properties, adverse effects emerged due to ligand promiscuity, limiting clinical efficacy and obscuring the precise contributions of myostatin and activin A. In this study, we investigated the musculoskeletal and whole-body metabolism effect of treating 5-week-old wildtype (Wt) and oim / oim mice for 11 weeks with either control antibody (Ctrl-Ab) or monoclonal anti-activin A antibody (ActA-Ab), anti-myostatin antibody (Mstn-Ab), or a combination of ActA-Ab and Mstn-Ab (Combo). We demonstrated that ActA-Ab treatment minimally impacts muscle mass in oim / oim mice, whereas Mstn-Ab and Combo treatments substantially increased muscle mass and overall lean mass regardless of genotype and sex. Further, while no improvements in cortical bone microarchitecture were observed with all treatments, minimal improvements in trabecular bone microarchitecture were observed with the Combo treatment in oim / oim mice. Our findings suggest that individual or combinatorial inhibition of myostatin and activin A alone is insufficient to robustly improve femoral biomechanical and microarchitectural properties in severely affected OI mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
(© 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.)
References: Bone Rep. 2016 May 27;5:136-40. (PMID: 27430011)
J Bone Miner Res. 2010 Dec;25(12):2633-46. (PMID: 20533325)
J Bone Miner Res. 2017 Jul;32(7):1496-1504. (PMID: 28370407)
Bone. 2019 Jul;124:137-147. (PMID: 31051315)
Neuromuscul Disord. 2007 Apr;17(4):290-6. (PMID: 17336525)
Clin Cancer Res. 2019 Sep 15;25(18):5458-5465. (PMID: 31068369)
Eur J Endocrinol. 2020 Oct;183(4):R95-R106. (PMID: 32621590)
J Pediatr Orthop. 2000 Mar-Apr;20(2):267-73. (PMID: 10739296)
J Bone Miner Res. 2018 Oct;33(10):1760-1772. (PMID: 29813187)
Trends Endocrinol Metab. 2014 Sep;25(9):464-71. (PMID: 25042839)
Mol Cell Proteomics. 2013 Oct;12(10):2890-900. (PMID: 23781072)
FASEB J. 2007 Sep;21(11):2949-60. (PMID: 17449718)
Anat Rec A Discov Mol Cell Evol Biol. 2003 Dec;275(2):1081-101. (PMID: 14613308)
Bone. 2014 Mar;60:162-71. (PMID: 24333131)
Nature. 1997 May 1;387(6628):83-90. (PMID: 9139826)
Biochem Biophys Res Commun. 2000 Feb 5;268(1):2-7. (PMID: 10652202)
Osteoporos Int. 2016 Jul;27(7):2355-2365. (PMID: 26856585)
PLoS One. 2020 Apr 21;15(4):e0230818. (PMID: 32315311)
Hum Mol Genet. 2012 Aug 15;21(16):3535-45. (PMID: 22589248)
Proc Natl Acad Sci U S A. 2008 May 13;105(19):7082-7. (PMID: 18460605)
J Bone Miner Res. 2016 May;31(5):1030-40. (PMID: 26716893)
Muscle Nerve. 2013 Mar;47(3):416-23. (PMID: 23169607)
Bone Res. 2016 Apr 26;4:16009. (PMID: 27563484)
J Bone Miner Res. 2021 Apr;36(4):739-756. (PMID: 33249643)
JBMR Plus. 2019 Feb 20;3(8):e10174. (PMID: 31485550)
Bone. 2015 Dec;81:400-406. (PMID: 26277094)
Bone. 2020 Mar;132:115061. (PMID: 31805389)
Muscle Nerve. 2017 Apr;55(4):458-464. (PMID: 27462804)
J Bone Miner Res. 2013 Jan;28(1):73-80. (PMID: 22836659)
J Med Genet. 1979 Apr;16(2):101-16. (PMID: 458828)
Pediatrics. 1997 Feb;99(2):E3. (PMID: 9099760)
Bone. 2017 Oct;103:1-11. (PMID: 28600151)
Matrix Biol. 2010 Sep;29(7):638-44. (PMID: 20619344)
Arch Dis Child. 2002 May;86(5):356-64. (PMID: 11970931)
Nat Med. 2014 Jun;20(6):670-5. (PMID: 24793237)
Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12457-61. (PMID: 9356471)
Bone. 2008 Apr;42(4):681-94. (PMID: 18313376)
J Bone Miner Res. 2014 Jun;29(6):1412-23. (PMID: 24443344)
Hum Mol Genet. 2017 Aug 1;26(15):2897-2911. (PMID: 28475764)
Bone. 2019 Nov;128:115036. (PMID: 31419601)
Muscle Nerve. 2018 Feb;57(2):294-304. (PMID: 28555931)
Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1701-5. (PMID: 8446583)
Bone Res. 2015 Feb 10;3:14042. (PMID: 26161291)
PLoS One. 2009;4(3):e4937. (PMID: 19295913)
Int J Cardiol. 2015 Oct 1;196:149-57. (PMID: 26100571)
J Endocrinol. 2017 Sep;234(3):279-289. (PMID: 28716975)
Nat Commun. 2017 Apr 28;8:15153. (PMID: 28452368)
Circ Res. 2000 Oct 13;87(8):663-9. (PMID: 11029401)
Pediatrics. 1972 Mar;49(3):375-91. (PMID: 5010466)
Biomed Res Int. 2021 Jan 8;2021:4243105. (PMID: 33506016)
J Bone Miner Res. 2019 Feb;34(2):207-214. (PMID: 30357929)
Eur J Pediatr. 2006 Jun;165(6):392-4. (PMID: 16534588)
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23942-23951. (PMID: 32900939)
J Mech Behav Biomed Mater. 2021 May;117:104377. (PMID: 33636677)
J Bone Miner Res. 2022 May;37(5):938-953. (PMID: 35195284)
Int J Mol Sci. 2020 Oct 14;21(20):. (PMID: 33066607)
معلومات مُعتمدة: T32 GM008396 United States GM NIGMS NIH HHS; T34 GM136493 United States GM NIGMS NIH HHS; UL1 TR002345 United States TR NCATS NIH HHS
تواريخ الأحداث: Date Created: 20230717 Latest Revision: 20240806
رمز التحديث: 20240806
مُعرف محوري في PubMed: PMC10339096
DOI: 10.1002/jbm4.10753
PMID: 37457877
قاعدة البيانات: MEDLINE
الوصف
تدمد:2473-4039
DOI:10.1002/jbm4.10753