دورية أكاديمية

Study of creosote transport properties in sandy and clay soils.

التفاصيل البيبلوغرافية
العنوان: Study of creosote transport properties in sandy and clay soils.
المؤلفون: da Rocha Soares LC; Department of Chemical Engineering, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil. lelia.cr.soares@gmail.com., Mendes GP; Department of Chemical Engineering, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil., Viegas RMA; Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil., Barbosa AM; Department of Chemical Engineering, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil.; Laboratory of Waste and Contaminated Areas, Institute for Technological Research, São Paulo, SP, 05508-901, Brazil., Yoshikawa NK; Laboratory of Waste and Contaminated Areas, Institute for Technological Research, São Paulo, SP, 05508-901, Brazil., Nascimento CAOD; Department of Chemical Engineering, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2023 Jul 19; Vol. 195 (8), pp. 967. Date of Electronic Publication: 2023 Jul 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Soil* , Soil Pollutants*/analysis, Clay ; Sand ; Creosote ; Environmental Monitoring ; Brazil
مستخلص: Creosote is an organic pollutant formed by a complex mixture of highly toxic and carcinogenic compounds and classified as a dense non-aqueous phase liquid (DNAPL). Its migration depends on media and fluid properties that control the multiphase flow in the subsurface. Residual saturation and hydraulic conductivity are essential parameters to accurately simulate fluid displacement in porous media. This work shows the behavior of creosote in porous medium for sandy and clay soils, collected in a contaminated area in the state of São Paulo, Brazil. Creosote retention was evaluated and compared to water. The retention curve parameters were obtained based on van Genuchten and Brooks and Corey models. The hydraulic conductivities of creosote and water are presented for both soils. The results show that, in the clay soil, water was more retained than creosote, while in the sandy soil, creosote retention was higher. The hydraulic conductivity values obtained in the clay soil show a difference of two orders of magnitude between creosote and water. Although creosote is a viscous fluid, it presents considerable mobility in the clay soil, which is relevant in remediation processes. This study advances our knowledge about DNAPL behavior in clay and sand, and no other study of creosote parameters in these porous media was found. A more accurate estimate of the time required for a liquid spill to reach groundwater can then be predicted, so that appropriate actions can be taken and risk management can be carried out.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Agaoglu, B., Nadim, K. C., Traugott, S., & Reinhard, H. (2015). Interphase mass transfer between fluids in subsurface formations: A review. Advances in Water Resources, 79, 162–194. https://doi.org/10.1016/j.advwatres.2015.02.009. (PMID: 10.1016/j.advwatres.2015.02.009)
Aranha, R. M., Magalhães, V. M. A., Mendes, G. P., Soares, L. C. R., Barbosa, A. M., Nascimento, C. A. O., Vianna, M. M. G. R., & Chiavone-Filho, O. (2020). Characterization and partitioning behavior of creosote in different matrices: Soil, water and air. Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-020-04772-y. (PMID: 10.1007/s11270-020-04772-y)
ASTM D5084–16a. (2016). Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM International. Retrieved June 7, 2023. from https://www.astm.org/d5084-16a.html.
Bezza, F. A., & Chirwa, E. M. N. (2016). Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere, 144, 635–644. https://doi.org/10.1016/j.chemosphere.2015.08.027. (PMID: 10.1016/j.chemosphere.2015.08.027)
Brooks, R., & Corey, A. (1964). Hydraulic properties of porous media. Colorado State University.
Busby, R. D., Lenhard, R. J., & Rolston, D. E. (1995). An Investigation of saturation-capillary pressure relations in two-and three-fluid systems for several NAPLS in different porous media. Ground Water, 33(4), 570–578. https://doi.org/10.1111/j.1745-6584.1995.tb00312.x. (PMID: 10.1111/j.1745-6584.1995.tb00312.x)
CETESB - Companhia Ambiental do Estado de São Paulo. (2020). Relatório de Áreas Contaminadas e Reabilitadas no Estado de São Paulo. Retrieved June 24, 2022. from https://mapas.infraestruturameioambiente.sp.gov.br/portal/apps/MapJournal/index.html?appid=28e7bb2238a443819447a8ec3ae4abe5.
CETESB - Companhia Ambiental do Estado de São Paulo. (2022). Ficha de Informação de Produto Químico. Retrieved January 20, 2022. from http://sistemasinter.cetesb.sp.gov.br/produtos/ficha_completa1.asp?consulta=COAL%20TAR%20-%20CREOSOTO.
Chen, J., Hopmans, J. W., & Grismer, M. E. (1999). Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Advances in Water Resources, 22(5), 479–493. https://doi.org/10.1016/S0309-1708(98)00025-6. (PMID: 10.1016/S0309-1708(98)00025-6)
Ditzler, C., Scheffe, K., & Monger, H. C. (2017). Soil Science Division Staff. 2017. Soil Survey Manual. USDA Handbook, 18. Government Printing Office, Washington, D.C.
EMBRAPA - Empresa Brasileira De Pesquisas. (2017). Centro Nacional de Pesquisa de Solos. Manual de Métodos de Análise de Solo. Editor técnico: Paulo César Teixeira et al. – 3. ed. ver. ampl. – Brasília, DF: Embrapa, 573. Retrieved June 17, 2023. from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo5.
Environment Agency. (2003). Review of the fate and transport of selected contaminants in the soil environment. Draft technical report P5–079/TR1.
Evans, M. S., Fazakas, K., & Keating, J. (2009). Creosote contamination in sediments of the Grey Owl Marina in Prince Albert National Park, Saskatchewan, Canada. Water, Air, & Soil Pollution, 201(1), 161–184. https://doi.org/10.1007/s11270-008-9935-1. (PMID: 10.1007/s11270-008-9935-1)
Gharedaghloo, B., & Price, J. S. (2019). Characterizing the immiscible transport properties of diesel and water in peat soil. Journal of Contaminant Hydrology, 221, 11–25. https://doi.org/10.1016/j.jconhyd.2018.12.005. (PMID: 10.1016/j.jconhyd.2018.12.005)
Hay, M. B., Stoliker, D. L., Davis, J. A., & Zachara, J. M. (2011). Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations. Water Resources Research, 47(10).
Hedayati, M., Ahmed, A., Hossain, M. S., Hossain, J., & Sapkota, A. (2020). Evaluation and comparison of in-situ soil water characteristics curve with laboratory SWCC curve. Transportation Geotechnics, 23, 100351. https://doi.org/10.1016/j.trgeo.2020.100351.
Henkler, F., Stolpmann, K., & Luch, A. (2012). Exposure to polycyclic aromatic hydrocarbons: Bulky DNA adducts and cellular responses. Molecular, Clinical and Environmental Toxicology, 107–131. https://doi.org/10.1007/978-3-7643-8340-4_5.
Homaee, M., Dirksen, C., & Feddes, R. A. (2002). Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management, 57(2), 89–109. https://doi.org/10.1016/S0378-3774(02)00072-0.
Jarsjö, J., Destouni, G., & Yaron, B. (1994). Retention and volatilisation of kerosene: Laboratory experiments on glacial and post-glacial soils. Journal of Contaminant Hydrology, 17(2), 167–185. https://doi.org/10.1016/0169-7722(94)90020-5. (PMID: 10.1016/0169-7722(94)90020-5)
Kamon, M., Endo, K., & Katsumi, T. (2003). Measuring the k–S–p relations on DNAPLs migration. Engineering Geology, 70(3–4), 351–363. https://doi.org/10.1016/S0013-7952(03)00103-0. (PMID: 10.1016/S0013-7952(03)00103-0)
King, M. W., & Barker, J. F. (1999). Migration and natural fate of a coal tar creosote plume: 1. Overview and plume development. Journal of Contaminant Hydrology, 39(3–4), 249–279. https://doi.org/10.1016/S0169-7722(99)00039-X.
Kueper, B. H., Wealthall, G. P., Smith, J. W. N., & Leharne, S. A., & Lerner, D. N. (2003). An illustrated handbook of DNAPL transport and fate in the subsurface. Environment Agency R&D Publication 133. EA, Bristol.
Kumar, S., Yetbarek, E., & Ojha, R. (2020). Numerical investigation of streamtube approach to model flow in heterogeneous unsaturated sandy soils. Journal of Hydrology, 590, 125250. https://doi.org/10.1016/j.jhydrol.2020.125250.
Lenhard, R. J., & Brooks, R. H. (1985). Comparison of liquid retention curves with polar and nonpolar liquids. Soil Science Society of America Journal, 49(4), 816–821. https://doi.org/10.2136/sssaj1985.03615995004900040005x. (PMID: 10.2136/sssaj1985.03615995004900040005x)
Lenhard, R. J., & Parker, J. (1987). Measurement and prediction of saturation-pressure relationships in three-phase porous media systems. Journal of Contaminant Hydrology, 1(4), 407–424. https://doi.org/10.1016/0169-7722(87)90017-9. (PMID: 10.1016/0169-7722(87)90017-9)
Magalhães, V., Aranha, R. M., Mendes, G. P., Soares, L. C., Yoshikawa, N. K., Nascimento, C. A., & Chiavone-Filho, O. (2022). Homogeneous and heterogeneous advanced oxidation processes: Treatability studies on artificially contaminated soils with creosote. Water Air & Soil Pollution, 233(1), 1–11. https://doi.org/10.1007/s11270-022-05498-9.
Makó, A. (2005). Measuring the two-phase capillary pressure-saturation curves of soil samples saturated with nonpolar liquids. Communications in Soil Science and Plant Analysis, 36(4–6), 439–453. https://doi.org/10.1081/CSS-200043170. (PMID: 10.1081/CSS-200043170)
Mao, B., Liu, Z., Liu, S., Zhang, M., & Lu, T. (2020). Investigation of relative permeability, saturation and capillary pressure relations of NAPL-contaminated sands. Journal of Soils and Sediments, 20(3), 1609–1620. https://doi.org/10.1007/s11368-019-02506-0. (PMID: 10.1007/s11368-019-02506-0)
Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441. https://doi.org/10.1137/0111030. (PMID: 10.1137/0111030)
Melber, C., Kielhorn, J., & Mangelsdorf, I. (2004). Concise international chemical assessment document 62: Coal tar creosote. World Health Organization.
Mendes, G. P., Magalhães, V. M., Soares, L. C., Aranha, R. M., Nascimento, C. A., Vianna, M. M., & Chiavone-Filho, O. (2020). Treatability studies of naphthalene in soil, water and air with persulfate activated by iron (II). Journal of Environmental Sciences, 90, 67–77. https://doi.org/10.1016/j.jes.2019.11.015. (PMID: 10.1016/j.jes.2019.11.015)
Mercer, J. W., & Cohen, R. M. (1990). A review of immiscible fluids in the subsurface: Properties, models, characterization and remediation. Journal of Contaminant Hydrology, 6(2), 107–163. https://doi.org/10.1016/0169-7722(90)90043-G. (PMID: 10.1016/0169-7722(90)90043-G)
Nouri, M., Homaee, M., & Bybordi, M. (2014). Quantitative assessment of LNAPL retention in soil porous media. Soil and Sediment Contamination: An International Journal, 23(8), 801–819. https://doi.org/10.1080/15320383.2014.887650.2014. (PMID: 10.1080/15320383.2014.887650.2014)
Polcaro, C. M., Brancaleoni, E., Donati, E., Frattoni, M., Galli, E., Migliore, L., & Rapanà, P. (2008). Fungal bioremediation of creosote-treated wood: A laboratory scale study on creosote components degradation by Pleurotus ostreatus mycelium. Bulletin of Environmental Contamination and Toxicology, 81(2), 180–184. https://doi.org/10.1007/s00128-008-9394-9. (PMID: 10.1007/s00128-008-9394-9)
Powers, S. E., Anckner, W. H., & Seacord, T. F. (1996). Wettability of NAPL-contaminated sands. Journal of Environmental Engineering, 22(10), 889–896. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:10(889). (PMID: 10.1061/(ASCE)0733-9372(1996)122:10(889))
Priddle, M. W., & MacQuarrie, K. T. (1994). Dissolution of creosote in groundwater: An experimental and modeling investigation. Journal of Contaminant Hydrology, 15(1–2), 27–56. https://doi.org/10.1016/0169-7722(94)90009-4. (PMID: 10.1016/0169-7722(94)90009-4)
Putthividhya, A., & Rodphai, S. (2013). Use of geostatistical models in DNAPL source zone architecture and dissolution profiles assessment in spatially variable aquifer. Environmental Earth Sciences, 70(5), 1983–1991. https://doi.org/10.1007/s12665-013-2713-4. (PMID: 10.1007/s12665-013-2713-4)
Sharma, R. S., & Mohamed, M. H. (2003). An experimental investigation of LNAPL migration in an unsaturated/saturated sand. Engineering Geology, 70(3–4), 305–313. https://doi.org/10.1016/S0013-7952(03)00098-X. (PMID: 10.1016/S0013-7952(03)00098-X)
US EPA - United States Environmental Protection Agency. (2020). Superfund Remedy Report. 16 th Edition. Retrieved July 01, 2022. from https://www.epa.gov/sites/production/files/2020-07/documents/100002509.pdf.
van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x. (PMID: 10.2136/sssaj1980.03615995004400050002x)
van Genuchten, M. V., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils (p. 85). Environmental Protection Agency.
Xiong, Q., Baychev, T. G., & Jivkov, A. P. (2016). Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 192, 101–117. https://doi.org/10.1016/j.jconhyd.2016.07.002. (PMID: 10.1016/j.jconhyd.2016.07.002)
Zarei, G., Homaee, M., Liaghat, A. M., & Hoorfar, A. H. (2010). A model for soil surface evaporation based on Campbell’s retention curve. Journal of Hydrology, 380(3–4), 356–361. https://doi.org/10.1016/j.jhydrol.2009.11.010. (PMID: 10.1016/j.jhydrol.2009.11.010)
فهرسة مساهمة: Keywords: Creosote; DNAPL residual saturation; Hydraulic conductivity; Porous media; Retention curve
المشرفين على المادة: 0 (Soil)
T1FAD4SS2M (Clay)
0 (Sand)
8021-39-4 (Creosote)
0 (Soil Pollutants)
تواريخ الأحداث: Date Created: 20230718 Date Completed: 20230721 Latest Revision: 20230810
رمز التحديث: 20230810
DOI: 10.1007/s10661-023-11578-y
PMID: 37464226
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-023-11578-y