دورية أكاديمية

Analysis of C. elegans Germline Small RNA Pathways.

التفاصيل البيبلوغرافية
العنوان: Analysis of C. elegans Germline Small RNA Pathways.
المؤلفون: Renaud MS; Department of Molecular Genetics, University of Toronto, Toronto, ON, USA., Seroussi U; Department of Molecular Genetics, University of Toronto, Toronto, ON, USA., Claycomb JM; Department of Molecular Genetics, University of Toronto, Toronto, ON, USA. julie.claycomb@utoronto.ca.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2023; Vol. 2677, pp. 37-59.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: MicroRNAs*/genetics , RNA, Small Untranslated*/genetics, Animals ; Caenorhabditis elegans/genetics ; Caenorhabditis elegans/metabolism ; Germ Cells/metabolism ; Gene Expression Regulation ; Argonaute Proteins/genetics ; Argonaute Proteins/metabolism
مستخلص: Sequence-specific gene regulation by small RNA (sRNA) pathways is essential for the development and function of organisms in all domains of life. These regulatory complexes, containing an Argonaute protein (AGO) guided by a bound sRNA, have the potential to regulate thousands of individual target transcripts at both the co- and post-transcriptional level. Determining the repertoire of transcripts that an AGO is capable of regulating in a particular context is essential to understanding the function of these regulatory modules. Immunoprecipitation (IP) of AGOs and subsequent RNA sequencing of their bound sRNAs allows for the inference of their target transcripts by mapping the sequences of the co-precipitated sRNAs back to their complementary target transcripts. This approach can be complemented by sequencing sRNAs from ago mutants as sRNA transcripts are degraded in the absence of their AGO binding partner. Here, we describe a framework for analyzing AGO/sRNA pathways in the germline, from using CRISPR-Cas9 to tag or mutate AGOs, through protocols for the extraction, sequencing, and analysis of sRNAs from AGO IPs and ago mutants.
(© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Ketting FR, Cochella L (2020) Concepts and functions of small RNA pathways in C. elegans.
Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896. (PMID: 10.1038/nrg217917943195)
Abe K, Inoue A, Suzuki MG, Aoki F (2010) Global gene silencing is caused by the dissociation of RNA polymerase II from DNA in mouse oocytes. J Reprod Dev 56:502–507. (PMID: 10.1262/jrd.10-068A20562521)
Li Y, Huang Y, Pan L, Zhao Y, Huang W, Jin W (2021) Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize. Chromosom Res 29:1–13. (PMID: 10.1007/s10577-021-09653-6)
Kamalidehghan B, Habibi M, Afjeh SS, Shoai M, Alidoost S, Ghale RA, Pouresmaeili F (2020) The importance of small non-coding RNAs in human reproduction: a review article. Appl Clin Genet 13:1. (PMID: 10.2147/TACG.S207491320213796956659)
Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136(4):656–668. (PMID: 10.1016/j.cell.2009.01.045192398872792755)
Chukrallah LG, Badrinath A, Seltzer K, Snyder EM (2021) Of rodents and ruminants: a comparison of small noncoding RNA requirements in mouse and bovine reproduction. J Animal Sci 99(3):skaa388. (PMID: 10.1093/jas/skaa388)
Youngman EM, Claycomb JM (2014) From early lessons to new frontiers: the worm as a treasure trove of small RNA biology. Front Genet 5:416. (PMID: 10.3389/fgene.2014.00416255059024245922)
Seroussi U, Lugowski A, Wadi L, Lao RX, Willis AR, Zhao W, Sundby AE, Charlesworth AG, Reinke AW, Claycomb JM (2023). A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions. Elife 12:e83853. https://doi.org/10.7554/eLife.83853 . PMID: 36790166.
Kim H, Ishidate T, Ghanta KS, Seth M, Conte D Jr, Shirayama M, Mello CC (2014) A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics 197(4):1069–1080. (PMID: 10.1534/genetics.114.166389248794624125384)
Paix A, Folkmann A, Rasoloson D, Seydoux G (2015) High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201(1):47–54. (PMID: 10.1534/genetics.115.179382261871224566275)
Dickinson DJ, Goldstein B (2016) CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202(3):885–901. (PMID: 10.1534/genetics.115.182162269532684788126)
Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336(6084):1037–1040. (PMID: 10.1126/science.1221551225395513521581)
Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA et al (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Mol Biol 10(12):1026–1032. (PMID: 10.1038/nsb1016)
Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437. (PMID: 10.1126/science.110251415284453)
Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12(4):340–349. (PMID: 10.1038/nsmb91815800637)
Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3(6):1901–1909. ISSN 2211-1247. (PMID: 10.1016/j.celrep.2013.05.033237464463769929)
Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150(1):100–110. ISSN 00928674 (ISSN). (PMID: 10.1016/j.cell.2012.05.017226827613464090)
Hauptmann J, Kater L, Löffler P, Merkl R, Meister G (2014) Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. RNA 20(10):1532–1538. (PMID: 10.1261/rna.045203.114251142914174435)
Gudipati RK, Braun K, Gypas F, Hess D, Schreier J, Carl SH et al (2021) Protease-mediated processing of Argonaute proteins controls small RNA association. Mol Cell 81(11):2388–2402. (PMID: 10.1016/j.molcel.2021.03.02933852894)
Bernhofer M, Dallago C, Karl T, Satagopam V, Heinzinger M, Littmann M, Rost B (2021) Predictprotein-predicting protein structure and function for 29 years. bioRxiv.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. (PMID: 10.1038/s41586-021-03819-2342658448371605)
Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC (2006) Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127(4):747–757. https://doi.org/10.1016/j.cell.2006.09.033 . PMID: 17110334. (PMID: 10.1016/j.cell.2006.09.03317110334)
Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Visual Exp JoVE. (64).
Li L, Dai H, Nguyen AP, Gu W (2020) A convenient strategy to clone small RNA and mRNA for high-throughput sequencing. RNA 26(2):218–227. https://doi.org/10.1261/rna.071605.119 . Epub 2019 Nov 21. PMID: 31754076. (PMID: 10.1261/rna.071605.119317540766961543)
Gu W, Claycomb JM, Batista PJ, Mello CC, Conte D (2011) Cloning Argonaute-associated small RNAs from Caenorhabditis elegans. Methods Mol Biol 725:251–280. https://doi.org/10.1007/978-1-61779-046-1_17 . PMID: 21528459. (PMID: 10.1007/978-1-61779-046-1_1721528459)
Charlesworth AG, Seroussi U, Lehrbach NJ, Renaud MS, Sundby AE, Molnar RI et al (2021) Two isoforms of the essential C. elegans Argonaute CSR-1 differentially regulate sperm and oocyte fertility. Nucleic Acids Res 49(15):8836–8865. (PMID: 10.1093/nar/gkab619343294658421154)
Small RNA Library Cloning Procedure for Deep Sequencing of Specific Endogenous siRNA Classes in Caenorhabditis elegans. https://experiments.springernature.com/articles/10.1007/978-1-4939-0931-5_6.
König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17(7):909–915. (PMID: 10.1038/nsmb.1838206019593000544)
Tate AJ, Brown KC, Montgomery TA (2023) Tiny-count: A counting tool for hierarchical classification and quantification of small RNA-seq reads with single-nucleotide precision. Bioinformatics Advances. Available online at: https://doi.org/10.1093/bioadv/vbad065.
Andrews, S. (2010). FastQC a quality control tool for high throughput sequence data [online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. (PMID: 10.14806/ej.17.1.200)
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. (PMID: 10.1093/bioinformatics/bts63523104886)
Harris TW, Arnaboldi V, Cain S, Chan J, Chen WJ, Cho J et al (2020) WormBase: a modern model organism information resource. Nucleic Acids Res 48(D1):D762–D767. (PMID: 31642470)
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. (PMID: 10.1093/nar/gky114130423142)
Wu WS, Brown JS, Chen TT, Chu YH, Huang WC, Tu S, Lee HC (2019) piRTarBase: a database of piRNA targeting sites and their roles in gene regulation. Nucleic Acids Res 47(D1):D181–D187. (PMID: 10.1093/nar/gky95630357353)
Smit AFA, Hubley R, Green P (2015) RepeatMasker Open-4.0. 2013–2015.
Rechavi O, Houri-Ze'evi L, Anava S, WSS G, Kerk SY, Hannon GJ, Hobert O (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158(2):277–287. https://doi.org/10.1016/j.cell.2014.06.020 . Epub 2014 Jul 10. PMID: 25018105. (PMID: 10.1016/j.cell.2014.06.020250181054377509)
Houri-Ze'evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O (2016) A tunable mechanism determines the duration of the transgenerational small rna inheritance in C. elegans. Cell 165(1):88–99. https://doi.org/10.1016/j.cell.2016.02.057 . PMID: 27015309. (PMID: 10.1016/j.cell.2016.02.05727015309)
Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B (2017) Transgenerational transmission of environmental information in C. elegans. Science. 356(6335):320–323. https://doi.org/10.1126/science.aah6412 . PMID: 28428426. (PMID: 10.1126/science.aah641228428426)
Simon M, Sarkies P, Ikegami K, Doebley AL, Goldstein LD, Mitchell J, Sakaguchi A, Miska EA, Ahmed S (2014) Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep. 7(3):762–773. https://doi.org/10.1016/j.celrep.2014.03.056 . Epub 2014 Apr 24. PMID: 24767993. (PMID: 10.1016/j.celrep.2014.03.056247679934049074)
Houri-Zeevi L, Teichman G, Gingold H, Rechavi O (2021) Stress resets ancestral heritable small RNA responses. Elife. 10:e65797. https://doi.org/10.7554/eLife.65797 . PMID: 33729152. (PMID: 10.7554/eLife.65797337291528021399)
Houri-Zeevi L, Korem Kohanim Y, Antonova O, Rechavi O (2020) Three Rules Explain Transgenerational Small RNA Inheritance in C. elegans. Cell. 182(5):1186–1197.e12. https://doi.org/10.1016/j.cell.2020.07.022 . Epub 2020 Aug 24. PMID: 32841602. (PMID: 10.1016/j.cell.2020.07.022328416027479518)
Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ, Conte D Jr, Mello CC (2012) CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell. 151(7):1488–1500. https://doi.org/10.1016/j.cell.2012.11.023 . PMID: 23260138. (PMID: 10.1016/j.cell.2012.11.023232601383581324)
Montgomery TA, Rim YS, Zhang C, Dowen RH, Phillips CM, Fischer SE, Ruvkun G (2012) PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet 8(4):e1002616. (PMID: 10.1371/journal.pgen.1002616225361583334881)
Kamminga LM, Van Wolfswinkel JC, Luteijn MJ, Kaaij LJ, Bagijn MP, Sapetschnig A et al (2012) Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet 8(7):e1002702. (PMID: 10.1371/journal.pgen.1002702228297723400576)
Billi AC, Alessi AF, Khivansara V, Han T, Freeberg M, Mitani S, Kim JK (2012) The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet 8(4):e1002617. (PMID: 10.1371/journal.pgen.1002617225480013330095)
فهرسة مساهمة: Keywords: Argonaute; C. elegans; CRISPR; Immunoprecipitation; RNA-seq; miRNA; piRNA; sRNA; siRNA
المشرفين على المادة: 0 (MicroRNAs)
0 (Argonaute Proteins)
0 (RNA, Small Untranslated)
تواريخ الأحداث: Date Created: 20230718 Date Completed: 20230721 Latest Revision: 20230721
رمز التحديث: 20230721
DOI: 10.1007/978-1-0716-3259-8_2
PMID: 37464234
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3259-8_2