دورية أكاديمية

Development of ionic liquid-coated PLGA nanoparticles for applications in intravenous drug delivery.

التفاصيل البيبلوغرافية
العنوان: Development of ionic liquid-coated PLGA nanoparticles for applications in intravenous drug delivery.
المؤلفون: Hamadani CM; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Dasanayake GS; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Gorniak ME; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Pride MC; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Monroe W; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Chism CM; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Heintz R; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Jarrett E; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Singh G; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Edgecomb SX; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA., Tanner EEL; Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA. eetanner@olemiss.edu.
المصدر: Nature protocols [Nat Protoc] 2023 Aug; Vol. 18 (8), pp. 2509-2557. Date of Electronic Publication: 2023 Jul 19.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101284307 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-2799 (Electronic) Linking ISSN: 17502799 NLM ISO Abbreviation: Nat Protoc Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, 2006-
مواضيع طبية MeSH: Ionic Liquids* , Nanoparticles*/chemistry, Mice ; Animals ; Polylactic Acid-Polyglycolic Acid Copolymer ; Polyglycolic Acid/chemistry ; Lactic Acid ; Tissue Distribution ; Drug Carriers/chemistry
مستخلص: Polymeric nanoparticles (NPs) are a promising platform for medical applications in drug delivery. However, their use as drug carriers is limited by biological (e.g., immunological) barriers after intravenous administration. Ionic liquids (ILs), formed from bulky asymmetric cations and anions, have a wide variety of physical internal and external interfacing properties. When assembled on polymeric NPs as biomaterial coatings, these external-interfacing properties can be tuned to extend their circulation half-life when intravenously injected, as well as drive biodistribution to sites of interest for selective organ accumulation. In our work, we are particularly interested in optimizing IL coatings to enable red blood cell hitchhiking in whole blood. In this protocol, we describe the preparation and physicochemical and biological characterization of choline carboxylate IL-coated polymeric NPs. The procedure is divided into five stages: (1) synthesis and characterization of choline-based ILs (1 week); (2) bare poly(lactic-co-glycolic acid) (50:50, acid terminated) Resomer 504H (PLGA) NP assembly, modified from previously established protocols, with dye encapsulation (7 h); (3) modification of the bare particles with IL coating (3 h); (4) physicochemical characterization of both PLGA and IL-PLGA NPs by dynamic light scattering, 1 H nuclear magnetic resonance spectroscopy, and transmission electron microscopy (1 week); (5) ex vivo evaluation of intravenous biocompatibility (including serum-protein resistance and hemolysis) and red blood cell hitchhiking in whole BALB/c mouse blood via fluorescence-activated cell sorting (1 week). With practice and technique refinement, this protocol is accessible to late-stage graduate students and early-stage postdoctoral scientists.
(© 2023. Springer Nature Limited.)
References: Lü, J. M. et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 9, 325–341 (2009). (PMID: 10.1586/erm.09.15194354552701163)
Park, J. et al. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J. Control. Release 156, 109–115 (2011). (PMID: 10.1016/j.jconrel.2011.06.025217238933800156)
Manoochehri, S. et al. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. Daru. https://doi.org/10.1186/2008-2231-21-58 (2013).
Amo, L. et al. Surface functionalization of PLGA nanoparticles to increase transport across the BBB for Alzheimer’s disease. Appl. Sci. 11, 4305 (2021). (PMID: 10.3390/app11094305)
Rezvantalab, S. et al. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 9, 1260 (2018). (PMID: 10.3389/fphar.2018.01260304500506224484)
Hashemi, M., Shamshiri, A., Saeedi, M., Tayebi, L. & Yazdian-Robati, R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys. 691, 108485 (2020). (PMID: 10.1016/j.abb.2020.10848532712288)
Dang, Y. & Guan, J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater. Med. 1, 10–19 (2020). (PMID: 10.1016/j.smaim.2020.04.001345531388455119)
Chung, T. W., Tsai, Y. L., Hsieh, J. H. & Tsai, W. J. Different ratios of lactide and glycolide in PLGA affect the surface property and protein delivery characteristics of the PLGA microspheres with hydrophobic additives. J. Microencapsul. 23, 15–27 (2006). (PMID: 10.1080/0265204050028611016830974)
Keles, H., Naylor, A., Clegg, F. & Sammon, C. Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym. Degrad. Stab. 119, 228–241 (2015). (PMID: 10.1016/j.polymdegradstab.2015.04.025)
Amjadi, I., Rabiee, M. & Hosseini, M. S. Anticancer activity of nanoparticles based on PLGA and its co-polymer: in-vitro evaluation. Iran. J. Pharm. Res. 12, 623–634 (2013). (PMID: 245237423920687)
Gentile, P., Chiono, V., Carmagnola, I. & Hatton, P. V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014). (PMID: 10.3390/ijms15033640245901263975359)
Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2015.09.012 (2016). (PMID: 10.1016/j.addr.2015.09.01226456916)
Nie, S. Editorial: understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 5, 523–528 (2010). (PMID: 10.2217/nnm.10.2320528447)
Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). (PMID: 10.1038/natrevmats.2016.14)
Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).
Ferrari, R., Sponchioni, M., Morbidelli, M. & Moscatelli, D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale 10, 22701–22719 (2018). (PMID: 10.1039/C8NR05933K30512025)
Barui, A. K., Oh, J. Y., Jana, B., Kim, C. & Ryu, J. Cancer‐targeted nanomedicine: overcoming the barrier of the protein corona. Adv. Ther. 3, 1900124 (2020).
Foroozandeh, P. & Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. https://doi.org/10.1186/S11671-018-2728-6 (2018).
Hoang Thi, T. T. et al. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 298 (2020). (PMID: 10.3390/polym12020298320242897077443)
Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Release 244, 184–193 (2016). (PMID: 10.1016/j.jconrel.2016.06.040273698645747248)
Garay, R. P., El-Gewely, R., Armstrong, J. K., Garratty, G. & Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents, Expert Opin. Drug Deliv. https://doi.org/10.1517/17425247.2012.720969 (2012).
López-Royo, T. et al. Encapsulation of large-size plasmids in PLGA nanoparticles for gene editing: comparison of three different synthesis methods. Nanomater 11, 2723 (2021).
Caparica, R. et al. Anticancer activity of rutin and its combination with ionic liquids on renal cells. Biomolecules 10, 233 (2020). (PMID: 10.3390/biom10020233320332227072522)
Tahara, Y., Morita, K., Wakabayashi, R., Kamiya, N. & Goto, M. Biocompatible ionic liquid enhances transdermal antigen peptide delivery and preventive vaccination effect. Mol. Pharm. 17, 3845–3856 (2020). (PMID: 10.1021/acs.molpharmaceut.0c0059832902989)
Tanner, E. E. L. et al. Design principles of ionic liquids for transdermal drug delivery. Adv. Mater. 31, 1901103 (2019). (PMID: 10.1002/adma.201901103)
Shi, Y. et al. Oral delivery of sorafenib through spontaneous formation of ionic liquid nanocomplexes. J. Control. Release 322, 602–609 (2020). (PMID: 10.1016/j.jconrel.2020.03.01832201308)
Banerjee, A. et al. Ionic liquids for oral insulin delivery. Proc. Natl Acad. Sci. USA 115, 7296–7301 (2018). (PMID: 10.1073/pnas.1722338115299415536048483)
Halayqa, M., Pobudkowska, A., Domańska, U. & Zawadzki, M. Studying of drug solubility in water and alcohols using drug-ammonium ionic liquid-compounds. Eur. J. Pharm. Sci. 111, 270–277 (2018). (PMID: 10.1016/j.ejps.2017.09.05228986197)
Hamadani, C. M., Goetz, M. J., Mitragotri, S. & Tanner, E. E. L. Protein-avoidant ionic liquid (PAIL)–coated nanoparticles to increase bloodstream circulation and drive biodistribution. Sci. Adv. 6, eabd7563 (2020). (PMID: 10.1126/sciadv.abd7563332393027688330)
Hamadani, C. M. et al. Improved nanoformulation and biofunctionalization of linear-dendritic block copolymers with biocompatible ionic liquids. Nanoscale https://doi.org/10.1039/D2NR00538G (2022).
Hu, C. M. J., et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1106634108 (2011).
Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011). (PMID: 10.3390/polym303137722577513)
Govender, T., Stolnik, S., Garnett, M. C., Illum, L. & Davis, S. S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release 57, 171–185 (1999). (PMID: 10.1016/S0168-3659(98)00116-39971898)
Haque, S. et al. Suggested procedures for the reproducible synthesis of poly(D,L-lactideco-glycolide) nanoparticles using the emulsification solvent diffusion platform. Curr. Nanosci. 14, 448–453 (2018). (PMID: 10.2174/1573413714666180313130235305326696225335)
Astete, C. E. & Sabliov, C. M. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17, 247–289 (2006).
Hernández-Giottonini, K. Y. et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Adv. 10, 4218–4231 (2020). (PMID: 10.1039/C9RA10857B354952619049000)
Kizilbey, K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega 4, 555–562 (2019). (PMID: 10.1021/acsomega.8b02767)
McCall, R. L. & Sirianni, R. W. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J. Vis. Exp. https://doi.org/10.3791/51015 (2013).
Alshamsan, A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm. J. 22, 219–222 (2014). (PMID: 10.1016/j.jsps.2013.12.00225061407)
Bilati, U., Allémann, E. & Doelker, E. Nanoprecipitation versus emulsion-based techniques or the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech https://doi.org/10.1208/pt060474 (2005).
Shkodra-Pula, B. et al. Encapsulation of the dual FLAP/mPEGS-1 inhibitor BRP-187 into acetalated dextran and PLGA nanoparticles improves its cellular bioactivity. J. Nanobiotechnol. 18, 73 (2020). (PMID: 10.1186/s12951-020-00620-7)
Huang, W. & Zhang, C. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol. J. 13, 1700203 (2018). (PMID: 10.1002/biot.201700203)
Whittington, N. C. & Wray, S. Suppression of red blood cell autofluorescence for immunocytochemistry on fixed embryonic mouse tissue. Curr. Protoc. Neurosci. 81, 2.28.1–2.28.12 (2017). (PMID: 10.1002/cpns.3529058770)
Zhang, Y. et al. Near-infrared fluorescent thienothiadiazole dyes with large Stokes shifts and high photostability. J. Org. Chem. 82, 5597–5606 (2017). (PMID: 10.1021/acs.joc.7b0042228474519)
Hamadani, C. M. A Novel Chemotherapeutic Nanoparticle Drug Delivery System: Surface Functionalization of Polymeric Nanoparticles with Protein-Phobic Ionic Liquid to Enhance Drug Bioavailability in Systemic Circulation. MSc thesis, Harvard Univ. (2020).
Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018). (PMID: 10.1038/s41467-018-05079-7299929666041332)
Evans, B. C. et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. https://doi.org/10.3791/50166 (2013).
Gindri, I. M. et al. Preparation of TiO2 nanoparticles coated with ionic liquids: a supramolecular approach. ACS Appl. Mater. Interfaces 6, 11536–11543 (2014). (PMID: 10.1021/am502210724933673)
Pourjavadi, A., Hosseini, S. H., Doulabi, M., Fakoorpoor, S. M. & Seidi, F. Multi-layer functionalized poly(ionic liquid) coated magnetic nanoparticles: highly recoverable and magnetically separable brønsted acid catalyst. ACS Catal. 2, 1259–1266 (2012). (PMID: 10.1021/cs300140j)
Adumitrăchioaie, A., Tertis, M., Cernat, A., Sandulescu, R. & Cristea, C. Electrochemical methods based on molecularly imprinted polymers for drug detection: a review. Int. J. Electrochem. Sci. 13, 2556–2576 (2018). (PMID: 10.20964/2018.03.75)
Zhang, R., Gao, R., Gou, Q., Lai, J. & Li, X. Precipitation polymerization: a powerful tool for preparation of uniform polymer particles. Polymers 14, 1851 (2022). (PMID: 10.3390/polym14091851355670189105061)
Takahashi, C. et al. Optimization of ionic liquid-incorporated PLGA nanoparticles for treatment of biofilm infections. Mater. Sci. Eng. C. 97, 78–83 (2019). (PMID: 10.1016/j.msec.2018.11.079)
Abid, Z. et al. Investigation of mucoadhesion and degradation of PCL and PLGA microcontainers for oral drug delivery. Polymers 11, 1828 (2019). (PMID: 10.3390/polym11111828317032616918296)
المشرفين على المادة: 1SIA8062RS (Polylactic Acid-Polyglycolic Acid Copolymer)
0 (Ionic Liquids)
26009-03-0 (Polyglycolic Acid)
33X04XA5AT (Lactic Acid)
0 (Drug Carriers)
تواريخ الأحداث: Date Created: 20230719 Date Completed: 20230809 Latest Revision: 20230812
رمز التحديث: 20231215
DOI: 10.1038/s41596-023-00843-6
PMID: 37468651
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-2799
DOI:10.1038/s41596-023-00843-6