دورية أكاديمية

Genomic and phenotypic evolution of nematode-infecting microsporidia.

التفاصيل البيبلوغرافية
العنوان: Genomic and phenotypic evolution of nematode-infecting microsporidia.
المؤلفون: Wadi L; Department of Molecular Genetics, University of Toronto, Toronto, Canada., El Jarkass HT; Department of Molecular Genetics, University of Toronto, Toronto, Canada., Tran TD; Department of Biology, San Diego State University, San Diego, California, United States of America., Islah N; Department of Molecular Genetics, University of Toronto, Toronto, Canada., Luallen RJ; Department of Biology, San Diego State University, San Diego, California, United States of America., Reinke AW; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
المصدر: PLoS pathogens [PLoS Pathog] 2023 Jul 20; Vol. 19 (7), pp. e1011510. Date of Electronic Publication: 2023 Jul 20 (Print Publication: 2023).
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science, c2005-
مواضيع طبية MeSH: Microsporidia*/genetics , Nematoda*/genetics, Animals ; Phylogeny ; Caenorhabditis elegans/genetics ; Genomics
مستخلص: Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2023 Wadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
References: Cell Microbiol. 2020 Nov;22(11):e13247. (PMID: 32748538)
Nat Methods. 2022 Jun;19(6):679-682. (PMID: 35637307)
Exp Suppl. 2022;114:179-213. (PMID: 35544004)
Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360. (PMID: 30398656)
Trends Parasitol. 2022 Aug;38(8):642-659. (PMID: 35667993)
PLoS Pathog. 2014 Jun 19;10(6):e1004200. (PMID: 24945527)
Genome Biol. 2019 Nov 14;20(1):238. (PMID: 31727128)
PLoS Pathog. 2015 Dec 31;11(12):e1005283. (PMID: 26720003)
Int J Syst Evol Microbiol. 2016 Feb;66(2):1100-1103. (PMID: 26585518)
Nat Commun. 2017 Jan 09;8:14023. (PMID: 28067236)
PLoS One. 2022 Dec 19;17(12):e0279103. (PMID: 36534656)
J Eukaryot Microbiol. 2017 Nov;64(6):779-791. (PMID: 28277606)
Nat Commun. 2022 Sep 26;13(1):5653. (PMID: 36163337)
Microbiol Spectr. 2017 Apr;5(2):. (PMID: 28944750)
Methods. 2003 Aug;30(4):313-21. (PMID: 12828945)
WormBook. 2014 May 02;:1-19. (PMID: 24803426)
Trends Genet. 2020 Dec;36(12):915-925. (PMID: 33012528)
Folia Parasitol (Praha). 2005 May;52(1-2):131-42; discussion 130. (PMID: 16004372)
Adv Parasitol. 2013;82:253-319. (PMID: 23548087)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15480-5. (PMID: 25313038)
Genome Res. 2012 Dec;22(12):2478-88. (PMID: 22813931)
Genome Biol Evol. 2013;5(12):2285-303. (PMID: 24259309)
Nat Methods. 2011 Sep 29;8(10):785-6. (PMID: 21959131)
Bioinform Adv. 2021;1(1):. (PMID: 35664289)
Genome Res. 1998 Aug;8(8):779-90. (PMID: 9724324)
PeerJ. 2018 Sep 21;6:e5658. (PMID: 30258733)
Sci Adv. 2021 May 5;7(19):. (PMID: 33952520)
Proteins. 2009 Nov 15;77(3):499-508. (PMID: 19507241)
Bioinformatics. 2005 Apr 15;21(8):1464-71. (PMID: 15585523)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
PLoS Biol. 2020 Oct 30;18(10):e3000958. (PMID: 33125369)
Bioinformatics. 2015 Oct 1;31(19):3210-2. (PMID: 26059717)
Infect Genet Evol. 2018 Nov;65:329-332. (PMID: 30142384)
Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
Nat Biotechnol. 2023 May 8;:. (PMID: 37156916)
Nature. 2001 Nov 22;414(6862):450-3. (PMID: 11719806)
PLoS Pathog. 2016 Jun 30;12(6):e1005724. (PMID: 27362540)
Nat Commun. 2022 Feb 1;13(1):591. (PMID: 35105900)
Curr Biol. 2013 Aug 19;23(16):1548-53. (PMID: 23932404)
PLoS Pathog. 2019 May 2;15(5):e1007668. (PMID: 31048922)
mBio. 2021 Jun 29;12(3):e0149021. (PMID: 34182782)
J Vis Exp. 2022 Apr 6;(182):. (PMID: 35467660)
Genome Res. 2003 Sep;13(9):2178-89. (PMID: 12952885)
PLoS Pathog. 2020 Feb 13;16(2):e1008276. (PMID: 32053705)
PLoS Comput Biol. 2011 Oct;7(10):e1002195. (PMID: 22039361)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Exp Suppl. 2022;114:91-114. (PMID: 35544000)
Appl Environ Microbiol. 2010 Sep;76(17):5960-4. (PMID: 20622131)
J Eukaryot Microbiol. 2023 Mar;70(2):e12944. (PMID: 36039868)
Nat Methods. 2011 Dec 25;9(2):173-5. (PMID: 22198341)
Parasit Vectors. 2021 Jan 25;14(1):81. (PMID: 33494800)
J Mol Biol. 2016 Feb 22;428(4):726-731. (PMID: 26585406)
J Mol Biol. 2001 Jan 19;305(3):567-80. (PMID: 11152613)
PLoS Biol. 2008 Dec 9;6(12):2736-52. (PMID: 19071962)
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85. (PMID: 26673716)
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8215-20. (PMID: 24843160)
PLoS Pathog. 2016 Dec 12;12(12):e1006093. (PMID: 27942022)
Nucleic Acids Res. 2016 Jul 8;44(12):e113. (PMID: 27131372)
Elife. 2017 Nov 24;6:. (PMID: 29171834)
BMC Bioinformatics. 2010 Mar 08;11:119. (PMID: 20211023)
Genome Biol Evol. 2022 Apr 10;14(4):. (PMID: 35439302)
Arch Insect Biochem Physiol. 2020 Dec;105(4):e21734. (PMID: 32901985)
Curr Genet. 2007 Mar;51(3):171-86. (PMID: 17235519)
Mol Ecol Resour. 2020 Nov;20(6):1486-1504. (PMID: 32516485)
Elife. 2022 Jan 07;11:. (PMID: 34994689)
Genome Res. 2009 Jun;19(6):1117-23. (PMID: 19251739)
Nat Microbiol. 2019 Nov;4(11):1798-1804. (PMID: 31332387)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9. (PMID: 18440982)
Curr Biol. 2021 Apr 26;31(8):1653-1665.e5. (PMID: 33607033)
PLoS Genet. 2013;9(8):e1003676. (PMID: 23990793)
Nucleic Acid Ther. 2016 Aug;26(4):250-6. (PMID: 27228357)
Environ Microbiol. 2017 May;19(5):2077-2089. (PMID: 28345194)
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
Biol Bull. 1995 Apr;188(2):128-135. (PMID: 29281361)
BMC Biol. 2012 May 31;10:47. (PMID: 22651672)
Nat Commun. 2015 May 13;6:7121. (PMID: 25968466)
Exp Suppl. 2022;114:115-136. (PMID: 35544001)
معلومات مُعتمدة: P40 OD010440 United States OD NIH HHS
تواريخ الأحداث: Date Created: 20230720 Date Completed: 20230802 Latest Revision: 20230804
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10393165
DOI: 10.1371/journal.ppat.1011510
PMID: 37471459
قاعدة البيانات: MEDLINE
الوصف
تدمد:1553-7374
DOI:10.1371/journal.ppat.1011510