دورية أكاديمية

Rice WRKY13 TF protein binds to motifs in the promoter region to regulate downstream disease resistance-related genes.

التفاصيل البيبلوغرافية
العنوان: Rice WRKY13 TF protein binds to motifs in the promoter region to regulate downstream disease resistance-related genes.
المؤلفون: Jimmy JL; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India. jimmyjohn10290@gmail.com., Karn R; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India., Kumari S; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India., Sruthilaxmi CB; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India., Pooja S; School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia., Emerson IA; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India., Babu S; VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, India.
المصدر: Functional & integrative genomics [Funct Integr Genomics] 2023 Jul 20; Vol. 23 (3), pp. 249. Date of Electronic Publication: 2023 Jul 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 100939343 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-7948 (Electronic) Linking ISSN: 1438793X NLM ISO Abbreviation: Funct Integr Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c2000-
مواضيع طبية MeSH: Transcription Factors*/genetics , Transcription Factors*/metabolism , Oryza*/metabolism, Disease Resistance/genetics ; Promoter Regions, Genetic ; Gene Regulatory Networks
مستخلص: In plants, pathogen resistance is brought about by the binding of certain transcription factor (TF) proteins to the cis-elements of certain target genes. These cis-elements are present upstream in the motif of the promoters of each gene. This ensures the binding of a specific TF to a specific promoter, therefore regulating the expression of that gene. Therefore, the study of each promoter sequence of all the rice genes would help identify the target genes of a specific TF. Rice 1 kb upstream promoter sequences of 55,986 annotated genes were analyzed using the Perl program algorithm to detect WRKY13 binding motifs (bm). The resulting genes were grouped using Gene Ontology and gene set enrichment analysis. A gene with more than 4 TF bm in their promoter was selected. Ten genes reported to have a role in rice disease resistance were selected for further analysis. Cis-acting regulatory element analysis was carried out to find the cis-elements and confirm the presence of the corresponding motifs in the promoter sequences of these genes. The 3D structure of WRKY13 TF and the corresponding ten genes were built, and the interacting residues were determined. The binding capacity of WRKY13 to the promoter of these selected genes was analyzed using docking studies. WRKY13 was considered for docking analysis based on the prior reports of autoregulation. Molecular dynamic simulations provided more details regarding the interactions. Expression data revealed the expression of the genes that helped provide the mechanism of interaction. Further co-expression network helped to characterize the interaction of these selected disease resistance-related genes with the WRKY13 TF protein. This study suggests downstream target genes that are regulated by the WRKY13 TF. The molecular mechanism involving the gene network regulated by WRKY13 TF in disease resistance against rice fungal pathogens is explored.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001.
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. https://doi.org/10.1093/bioinformatics/bti770. (PMID: 10.1093/bioinformatics/bti77016301204)
Arnott S, Campbell-Smith PJ, Chandrasekaran R (1976) Atomic coordinates and molecular conformations for DNA-DNA, RNA-RNA, and DNA-RNA helices. In: Fasman GP (ed) Handbook of biochemistry and molecular Biology, 3rd edn, vol 2, Nucleic Acids. CRC Press, Cleveland, OH pp 411–422.
Baiya S, Mahong B, Lee SK, Jeon JS, Ketudat Cairns JR (2018) Demonstration of monolignol β-glucosidase activity of rice Os4BGlu14, Os4BGlu16 and Os4BGlu18 in Arabidopsis thaliana bglu45 mutant. Plant Physiol Biochem 127:223–230. https://doi.org/10.1016/j.plaphy.2018.03.026. (PMID: 10.1016/j.plaphy.2018.03.02629614441)
Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 41(21):9764–9778. https://doi.org/10.1093/nar/gkt732. (PMID: 10.1093/nar/gkt732239751973834811)
Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96. https://doi.org/10.1111/j.1365-3040.2007.01739.x. (PMID: 10.1111/j.1365-3040.2007.01739.x17986178)
Cao P, Jung KH, Choi D, Hwang D, Zhu J, Ronald PC (2012) The Rice Oligonucleotide Array Database: an atlas of rice gene expression. Rice 5:17. https://doi.org/10.1186/1939-8433-5-17. (PMID: 10.1186/1939-8433-5-17242798094883718)
Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Despres C, Martin GB (2003) The tomato transcription factor Pti4 regulates defence-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15(12):3033–3050. https://doi.org/10.1105/tpc.017574. (PMID: 10.1105/tpc.01757414630974282854)
Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129(2):706–716. https://doi.org/10.1104/pp.001057. (PMID: 10.1104/pp.00105712068113161695)
Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie, (2002) Expression profile matrix of Arabidopsis transcription factor genes suggest their putative functions in response to environmental stresses. Plant Cell 14(3):559–574. https://doi.org/10.1105/tpc.010410. (PMID: 10.1105/tpc.01041011910004150579)
Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167(3):1087–1099. https://doi.org/10.1104/pp.114.256016. (PMID: 10.1104/pp.114.256016256243954348788)
Cho MH, Lee SW (2015) Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci 16(12):29120–29133. https://doi.org/10.3390/ijms161226152. (PMID: 10.3390/ijms161226152266901314691099)
Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC (2019) PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res 47(D1):D1155–D1163. https://doi.org/10.1093/nar/gky1081. (PMID: 10.1093/nar/gky108130395277)
Chujo T, Takai R, Akimoto-Tomiyama C, Ando S, Minami E, Nagamura Y, Kaku H, Shibuya N, Yasuda M, Nakashita H, Umemura K, Okada A, Okada K, Nojiri H, Yamane H (2007) Involvement of the elicitor-induced gene OsWRKY53 in the expression of defence-related genes in rice. Biochem Biophys Acta 1769(7–8):497–505. https://doi.org/10.1016/j.bbaexp.2007.04.006. (PMID: 10.1016/j.bbaexp.2007.04.00617532485)
Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68(1–2):81–92. https://doi.org/10.1007/s11103-008-9353-1. (PMID: 10.1007/s11103-008-9353-1185237292493524)
Cohen Y, Eyal H, Hanania J, Malik Z (1989) Ultrastructure of Pseudoperonospora cubensis in muskmelon genotype susceptible and resistant to downy mildew. Physiol Mol Plant Pathol 34(1):27–40. https://doi.org/10.1016/0885-5765(89)90014-3. (PMID: 10.1016/0885-5765(89)90014-3)
Dai L, Xu Y, Du Z, Xiao-Dong Su, Jin Yu (2021) Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA. Proc Natl Acad Sci 118(23):e2102621118. https://doi.org/10.1073/pnas.2102621118. (PMID: 10.1073/pnas.2102621118340747878201915)
Das A, Pramanik K, Sharma R, Gantait S, Banerjee J (2019) In-silico study of biotic and abiotic stress-related transcription factor binding sites in the promoter regions of rice germin-like protein genes. PLoS One 14(2):e0211887. https://doi.org/10.1371/journal.pone.0211887. (PMID: 10.1371/journal.pone.0211887307633466375593)
De Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24(23):4624–4631. https://doi.org/10.1093/nar/24.23.4624. (PMID: 10.1093/nar/24.23.46248972846146317)
Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70. https://doi.org/10.1093/nar/gkq310. (PMID: 10.1093/nar/gkq310204356772896167)
Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206. https://doi.org/10.1016/s1360-1385(00)01600-9. (PMID: 10.1016/s1360-1385(00)01600-910785665)
Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M (2015) Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep 5:7773. https://doi.org/10.1038/srep07773. (PMID: 10.1038/srep07773255869625379001)
Guex N, Peitsch MC (1997) Swiss-model and the Swiss-PDB Viewer: an environment for comparative protein modelling. Electrophoresis 18(15):2714–2723. https://doi.org/10.1002/elps.1150181505. (PMID: 10.1002/elps.11501815059504803)
Hamzeh-Mivehroud M, Moghaddas-Sani H, Rahbar-Shahrouziasl M, Dastmalchi S (2015) Identifying key interactions stabilizing DOF zinc finger–DNA complexes using in silico approaches. J Theor Biol 382:150–159. https://doi.org/10.1016/j.jtbi.2015.06.013. (PMID: 10.1016/j.jtbi.2015.06.01326092376)
Hannenhalli S (2008) Eukaryotic transcription factor binding sites-modelling and integrative search methods. Bioinformatics 24(11):1325–1331. https://doi.org/10.1093/bioinformatics/btn198. (PMID: 10.1093/bioinformatics/btn19818426806)
He Y, Zhang H, Sun Z, Li J, Hong G, Zhu Q, Zhou X, MacFarlane S, Yan F, Chen J (2016) Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black-streaked dwarf virus infection in rice. New Phytol 214(1):388–399. https://doi.org/10.1111/nph.14376. (PMID: 10.1111/nph.1437627976810)
Higo K, Ugawa Y, Iwamoto M, Higo H (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300. https://doi.org/10.1093/nar/27.1.297. (PMID: 10.1093/nar/27.1.2979847208148163)
Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449(7163):677–681. https://doi.org/10.1038/nature06151. (PMID: 10.1038/nature0615117928853)
Hou M, Xu W, Bai H, Liu Y, Li L, Liu L, Liu B, Liu G (2012) Characteristic expression of rice pathogenesis-related proteins in rice leaves during interactions with Xanthomonas oryzae pv. oryzae. Plant Cell Rep 31(5):895–904. https://doi.org/10.1007/s00299-011-1210-z. (PMID: 10.1007/s00299-011-1210-z22187088)
Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244(6):563–571. https://doi.org/10.1007/BF00282746. (PMID: 10.1007/BF002827467969025)
Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L, McCouch S (2006) Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res 34:D717-723. https://doi.org/10.1093/nar/gkj154. (PMID: 10.1093/nar/gkj15416381966)
Jeyasri R, Muthuramalingam P, Satish L, Adarshan S, Lakshmi MA, Pandian SK, Chen J-T, Ahmar S, Wang X, Mora-Poblete F, Ramesh M (2021) The role of OsWRKY genes in rice when faced with single and multiple abiotic stresses. Agronomy 11(7):1301. https://doi.org/10.3390/agronomy11071301. (PMID: 10.3390/agronomy11071301)
Jimmy JL, Babu S (2019) Gene network mediated by WRKY13 to regulate resistance against sheath infecting fungi in rice (Oryza sativa L.). Plant Sci 280:269–282. https://doi.org/10.1016/j.plantsci.2018.12.017. (PMID: 10.1016/j.plantsci.2018.12.017)
Jimmy JL, Babu S (2019) Variations in the structure and evolution of rice WRKY genes in indica and japonica genotypes and their co-expression network in mediating disease resistance. Evol Bioinforma Online 15:1176934319857720. https://doi.org/10.1177/1176934319857720. (PMID: 10.1177/1176934319857720)
Jimmy JL, Karn R, Kumari S, Sruthilaxmi CB, Pooja S, Babu S (2023) Rice WRKY13 TF protein binds to motifs in the promoter region to regulate downstream disease resistance-related genes. BioRxiv. https://doi.org/10.1101/2023.01.18.523945.
Kankainen M, Holm L (2004) POBO, transcription factor binding site verification with bootstrapping. Nucleic Acids Res 32:W222–W229. https://doi.org/10.1093/nar/gkh463. (PMID: 10.1093/nar/gkh46315215385441601)
Karkute SG, Easwaran M, Gujjar RS, Piramanayagam S, Singh M (2015) Protein modeling and molecular dynamics simulation of SlWRKY4 protein cloned from drought tolerant tomato (Solanum Habrochaites) line EC520061. J Mol Model 21(10):255. https://doi.org/10.1007/s00894-015-2798-7. (PMID: 10.1007/s00894-015-2798-726369915)
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next-generation sequence and optical map data. Rice 6(1):4. https://doi.org/10.1186/1939-8433-6-4. (PMID: 10.1186/1939-8433-6-4242803745395016)
Kolinski A, Skolnick J (1994) Monte Carlo simulations of protein folding. II. Application to Protein A, ROP, and Crambin. Proteins: Struct Funct Bioinforma 18(4):353–366. https://doi.org/10.1002/prot.340180406. (PMID: 10.1002/prot.340180406)
Kong W, Ding L, Cheng J, Wang B (2018) Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice 11(1):52. https://doi.org/10.1186/s12284-018-0243-0. (PMID: 10.1186/s12284-018-0243-0302097076135729)
Li W, Tiana Z, Yub D (2015) WRKY13 acts in stem development in Arabidopsis thaliana. Plant Sci 236:205–213. https://doi.org/10.1016/j.plantsci.2015.04.004. (PMID: 10.1016/j.plantsci.2015.04.00426025534)
Li W, Wang H, Yu D (2016) Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Mol Plant 9(11):1492–1503. https://doi.org/10.1016/j.molp.2016.08.003. (PMID: 10.1016/j.molp.2016.08.00327592586)
Lifanov AP, Makeev VJ, Nazina AG, Papatsenko DA (2003) Homotypic regulatory clusters in Drosophila. Genome Res 13(4):579–588. https://doi.org/10.1101/gr.668403. (PMID: 10.1101/gr.66840312670999430164)
Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15(8):593–603. https://doi.org/10.1038/sj.cr.7290329. (PMID: 10.1038/sj.cr.729032916117849)
Luan ZH, Zhou DW (2015) Screening of rice (Oryza sativa L.) OsPR1b- interacting factors and their roles in resisting bacterial blight. Genet Mol Res 14(1):1868–1874. https://doi.org/10.4238/2015. (PMID: 10.4238/201525867332)
Luscombe N, Laskowski RA, Thornton JM (1997) NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res 25:4940–4945. https://doi.org/10.1093/nar/25.24.4940. (PMID: 10.1093/nar/25.24.49409396800147160)
Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26(4):403–410. https://doi.org/10.1038/82521. (PMID: 10.1038/8252111101835)
Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149(1):286–296. https://doi.org/10.1104/pp.108.128348. (PMID: 10.1104/pp.108.128348190110032613727)
McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793. https://doi.org/10.1006/jmbi.1994.1334. (PMID: 10.1006/jmbi.1994.13348182748)
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47(D1):D419–D426. https://doi.org/10.1093/nar/gky1038. (PMID: 10.1093/nar/gky103830407594)
Mou S, Liu Z, Guan D, Qiu A, Lai Y, He S (2013) Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, OsPIANK1, in basal defense against Magnaporthe oryzae attack. PLoS One 8(3):e59699. https://doi.org/10.1371/journal.pone.0059699. (PMID: 10.1371/journal.pone.0059699235557503608567)
Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: Possible involvement of NtWRKYs and autorepression. J Biol Chem 279(53):55355–55361. https://doi.org/10.1074/jbc.M409674200. (PMID: 10.1074/jbc.M40967420015509567)
Pandey B, Grover A, Sharma P (2018) Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics 19(1):132. https://doi.org/10.1186/s12864-018-4506-3. (PMID: 10.1186/s12864-018-4506-3294334245810047)
Pooja S, Sweta K, Mohanapriya A, Sudandiradoss C, Siva R, Gothandam KM, Babu S (2015) Homotypic clustering of OsMYB4 binding site motifs in promoters of the rice genome and cellular-level implications on sheath blight disease resistance. Gene 561:209–218. https://doi.org/10.1016/j.gene.2015.02.031. (PMID: 10.1016/j.gene.2015.02.03125688880)
Prasch CM, Sonnewald U (2015) Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot 114:4–14. https://doi.org/10.1016/j.envexpbot.2014.06.020. (PMID: 10.1016/j.envexpbot.2014.06.020)
Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499. https://doi.org/10.1094/MPMI-20-5-0492. (PMID: 10.1094/MPMI-20-5-049217506327)
Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1(3):538–551. https://doi.org/10.1093/mp/ssn012. (PMID: 10.1093/mp/ssn01219825559)
Qiu D, Xiao J, Xie W, Cheng H, Li X, Wang S (2009) Exploring transcriptional signaling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol 9:74. https://doi.org/10.1186/1471-2229-9-74. (PMID: 10.1186/1471-2229-9-74195348283224702)
Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29(4):691–702. https://doi.org/10.1007/BF00041160. (PMID: 10.1007/BF000411608541496)
Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15(20):5690–5700. (PMID: 10.1002/j.1460-2075.1996.tb00953.x8896462452313)
Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang CC, Iwamoto M, Abe T, Yamada Y, Muto A, Inokuchi H, Ikemura T, Matsumoto T, Sasaki T, Itoh T (2013) Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54(2):e6. https://doi.org/10.1093/pcp/pcs183. (PMID: 10.1093/pcp/pcs183232994113583025)
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43(Web Server issue):W443–W447. https://doi.org/10.1093/nar/gkv315. (PMID: 10.1093/nar/gkv315258736284489249)
Sánchez R, Šali A (1997) Advances in comparative protein-structure modelling. Curr Opin Struct Biol 7(2):206–214. https://doi.org/10.1016/s0959-440x(97)80027-9. (PMID: 10.1016/s0959-440x(97)80027-99094331)
Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Métraux JP (1997) Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol 114(1):79–88. https://doi.org/10.1104/pp.114.1.79. (PMID: 10.1104/pp.114.1.7912223690158281)
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303. (PMID: 10.1101/gr.123930314597658403769)
Shi W, Zhao SL, Liu K, Sun YB, Ni ZB, Zhang GY, Tang HS, Zhu JW, Wan BJ, Sun HQ, Dai JY, Sun MF, Yan GH, Wang AM, Zhu GY (2020) Comparison of leaf transcriptome in response to Rhizoctonia solani infection between resistant and susceptible rice cultivars. BMC Genomics 21(1):245. https://doi.org/10.1186/s12864-020-6645-6. (PMID: 10.1186/s12864-020-6645-6321884007081601)
Singh A, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR, Singh A, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR (2019) Understanding the effect of structural diversity in WRKY transcription factors on DNA binding efficiency through molecular dynamics simulation. Biology 8(4):83. https://doi.org/10.3390/biology8040083. (PMID: 10.3390/biology8040083316900056956055)
Sruthilaxmi CB, Babu S (2020) Proteome responses to individual pathogens and abiotic conditions in rice seedlings. Phytopathology 110(7):1326–1341. https://doi.org/10.1094/PHYTO-11-19-0425-R.
Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15(9):2076–2092. https://doi.org/10.1105/tpc.014597. (PMID: 10.1105/tpc.01459712953112181332)
Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of Gene Ontology terms. PLoS ONE 6(7):e21800. https://doi.org/10.1371/journal.pone.0021800. (PMID: 10.1371/journal.pone.0021800217891823138752)
UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acid Res 43:D204-212. (PMID: 10.1093/nar/gku989)
Van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJ (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146(4):1983–1995. https://doi.org/10.1104/pp.107.112789. (PMID: 10.1104/pp.107.112789182637812287365)
Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67. https://doi.org/10.3389/fpls.2016.00067. (PMID: 10.3389/fpls.2016.00067269040444746321)
Wang Y, Luo H, Wang H, Xiang Z, Wei S, Zheng W (2022) Comparative transcriptome analysis of rice cultivars resistant and susceptible to Rhizoctonia solani AG1-IA. BMC Genomics 23(1):606. https://doi.org/10.1186/s12864-022-08816-x. (PMID: 10.1186/s12864-022-08816-x359862489392349)
Wu Y, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124(2):024503. https://doi.org/10.1063/1.2136877.
Xiao J, Cheng H, Li X, Xiao J, Xu C, Wang S (2013) Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol 163:1868–1882. https://doi.org/10.1104/pp.113.226019. (PMID: 10.1104/pp.113.226019241301973850198)
Xie XZ, Xue YJ, Zhou JJ, Zhang B, Chang H, Takano M (2011) Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant 4:688–696. https://doi.org/10.1093/mp/ssr005. (PMID: 10.1093/mp/ssr00521357645)
Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135(1):507–515. https://doi.org/10.1104/pp.104.038612. (PMID: 10.1104/pp.104.03861215133151429402)
Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochem Biophys Acta 1679(3):279–287. https://doi.org/10.1016/j.bbaexp.2004.07.005. (PMID: 10.1016/j.bbaexp.2004.07.00515358520)
Yamasaki K, Kigawa T, Watanabe S, Inoue M, Yamasaki T, Seki M, Shinozaki K, Yokoyama S (2012) Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J Biol Chem 287(10):7683–7691. https://doi.org/10.1074/jbc.M111.279844. (PMID: 10.1074/jbc.M111.279844222191843293589)
Yang Y, Zhang Y, Ding P, Johnson K, Li X, Zhang Y (2012) The ankyrin-repeat trans-membrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. Plant Physiol 159(4):1857–1865. https://doi.org/10.1104/pp.112.197152. (PMID: 10.1104/pp.112.197152227406153425218)
Yang X, Gu X, Ding J, Yao L, Gao X, Zhang M, Meng Q, Wei S, Fu J (2022) Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani. BMC Genomics 23(1):278. https://doi.org/10.1186/s12864-022-08524-6. (PMID: 10.1186/s12864-022-08524-6353928158991730)
Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64(16):5085–5097. https://doi.org/10.1093/jxb/ert298. (PMID: 10.1093/jxb/ert298240438533830488)
Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13(7):1527–1540. https://doi.org/10.1105/tpc.010115. (PMID: 10.1105/tpc.01011511449049139550)
Zhang X, Li D, Zhang H, Wang X, Zheng Z, Song F (2010) Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses. Mol Biol Rep 37(2):653–660. https://doi.org/10.1007/s11033-009-9507-5. (PMID: 10.1007/s11033-009-9507-519288292)
فهرسة مساهمة: Keywords: Cis-acting regulatory elements; Gene Ontology; Gene set enrichment; Motif; Promoter analysis; Transcription factor; WRKY13
المشرفين على المادة: 0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20230720 Date Completed: 20230920 Latest Revision: 20230922
رمز التحديث: 20230922
DOI: 10.1007/s10142-023-01167-0
PMID: 37474674
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-7948
DOI:10.1007/s10142-023-01167-0