دورية أكاديمية

Applicability of Chronic Multiple Linear Regression Models for Predicting Zinc Toxicity in Australian and New Zealand Freshwaters.

التفاصيل البيبلوغرافية
العنوان: Applicability of Chronic Multiple Linear Regression Models for Predicting Zinc Toxicity in Australian and New Zealand Freshwaters.
المؤلفون: Stauber JL; Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia.; Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia., Gadd J; National Institute for Water Research, Auckland, New Zealand., Price GAV; Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia.; Faculty of Science, University of Technology, Sydney, New South Wales, Australia., Evans A; Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia., Holland A; Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia., Albert A; National Institute for Water Research, Auckland, New Zealand., Batley GE; Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia., Binet MT; Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia., Golding LA; Commonwealth Scientific and Industrial Research Organisation Environment, Sydney, New South Wales, Australia., Hickey C; RMA Science, Hamilton, New Zealand., Harford A; Environmental Institute of the Supervising Scientist, Darwin, Northern Territory, Australia., Jolley D; Wollongong Resources, Wollongong, New South Wales, Australia., Koppel D; Australian Institute of Marine Science, Perth, Western Australia, Australia., McKnight KS; School of Natural Science, Macquarie University, Sydney, New South Wales, Australia., Morais LG; Science, Engineering and Technology, La Trobe University, Wodonga, Victoria, Australia., Ryan A; International Zinc Association, Syracuse, New York, USA., Thompson K; National Institute for Water Research, Auckland, New Zealand., Van Genderen E; International Zinc Association, San Francisco, California, USA., Van Dam RA; Water Quality Advice, Adelaide, SA, Australia., Warne MSJ; Faculty of Science, University of Queensland, Brisbane, Qld, Australia.
المصدر: Environmental toxicology and chemistry [Environ Toxicol Chem] 2023 Dec; Vol. 42 (12), pp. 2614-2629. Date of Electronic Publication: 2023 Aug 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: SETAC Press Country of Publication: United States NLM ID: 8308958 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-8618 (Electronic) Linking ISSN: 07307268 NLM ISO Abbreviation: Environ Toxicol Chem Subsets: MEDLINE
أسماء مطبوعة: Publication: Pensacola, FL : SETAC Press
Original Publication: New York : Pergamon Press, c1982-
مواضيع طبية MeSH: Cladocera* , Water Pollutants, Chemical*/toxicity, Animals ; Linear Models ; New Zealand ; Hydrogen-Ion Concentration ; Australia ; Organic Chemicals ; Zinc/toxicity ; Fresh Water
مستخلص: Bioavailability models, for example, multiple linear regressions (MLRs) of water quality parameters, are increasingly being used to develop bioavailability-based water quality criteria for metals. However, models developed for the Northern Hemisphere cannot be adopted for Australia and New Zealand without first validating them against local species and local water chemistry characteristics. We investigated the applicability of zinc chronic bioavailability models to predict toxicity in a range of uncontaminated natural waters in Australia and New Zealand. Water chemistry data were compiled to guide a selection of waters with different zinc toxicity-modifying factors. Predicted toxicities using several bioavailability models were compared with observed chronic toxicities for the green alga Raphidocelis subcapitata and the native cladocerans Ceriodaphnia cf. dubia and Daphnia thomsoni. The most sensitive species to zinc in five New Zealand freshwaters was R. subcapitata (72-h growth rate), with toxicity ameliorated by high dissolved organic carbon (DOC) or low pH, and hardness having a minimal influence. Zinc toxicity to D. thomsoni (reproduction) was ameliorated by both high DOC and hardness in these same waters. No single trophic level-specific effect concentration, 10% (EC10) MLR was the best predictor of chronic toxicity to the cladocerans, and MLRs based on EC10 values both over- and under-predicted zinc toxicity. The EC50 MLRs better predicted toxicities to both the Australian and New Zealand cladocerans to within a factor of 2 of the observed toxicities in most waters. These findings suggest that existing MLRs may be useful for normalizing local ecotoxicity data to derive water quality criteria for Australia and New Zealand. The final choice of models will depend on their predictive ability, level of protection, and ease of use. Environ Toxicol Chem 2023;42:2614-2629. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
(© 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.)
References: Armstead, M. Y., Bitzer-Creathers, L., & Wilson, M. (2016). The effects of elevated specific conductivity on the chronic toxicity of mining influenced streams using Ceriodaphnia dubia. PLoS One, 11, 1-16.
Australia and New Zealand Environment and Conservation Council/Agriculture and Research Management Council of Australia and New Zealand (ANZECC/ARMCANZ). (2000). Australian and New Zealand guidelines for fresh and marine water quality Canberra, ACT, Australia.
Australian and New Zealand Governments. (2018). Australian and New Zealand guidelines for fresh and marine water quality. www.waterquality.gov.au/anz-guidelines.
Bailey, H. C., Krassoi, R., Elphick, J. R., Mulhall, A.-M., Hunt, P., Tedmanson, L., & Lovell, A. (2000). Application of Ceriodaphnia dubia for whole effluent toxicity tests in the Hawkesbury-Nepean watershed, New South Wales, Australia: Method development and validation. Environmental Toxicology and Chemistry, 19, 88-93.
Besser, J. M., Ivey, C. D., Steevens, J. A., Cleveland, D., Soucek, D., Dickinson, A., Van Genderen, E. J., Ryan, A. C., Schlekat, C. E., Garman, E., Middleton, E., & Santore, R. (2021). Modeling the bioavailability of nickel and zinc to Ceriodaphnia dubia and Neocloeon triangulifer in toxicity tests with natural waters. Environmental Toxicology and Chemistry, 40(11), 3049-3062. https://doi.org/10.1002/etc.5178.
Brix, K. V., DeForest, D. K., Tear, L. M., Peijnenburg, W., Peters, A., Middleton, E. T., & Erickson, R. (2020). Development of empirical bioavailability models for metals. Environmental Toxicology and Chemistry, 39, 85-100.
Canadian Council of Ministers of the Environment. (2018). Scientific criteria document for the development of the Canadian water quality guidelines for the protection of aquatic life: Zinc. January 2018, Canadian Environmental Quality Guidelines, 1999 (pp. 1-13). http://ceqg-rcqe.ccme.ca/download/en/360.
Close, M. E., & Davies-Colley, R. J. (1990). Baseflow water chemistry in New Zealand rivers 1. Characterization. New Zealand Journal of Marine and Freshwater Research, 24, 319-341.
Collier, K. J. (1987). Spectrophotometric determination of dissolved organic carbon in some South Island streams and rivers (note). New Zealand Journal of Marine and Freshwater Research, 21, 349-351.
Cooper, N. L., Bidwell, J. R., & Kumar, A. (2009). Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicology and Environmental Safety, 72, 1523-1528.
DeForest, D. K., & Van Genderen, E. J. (2012). Application of U.S. EPA guidelines in a bioavailability-based assessment of ambient water quality criteria for zinc in freshwater. Environmental Toxicology and Chemistry, 31(6), 1264-1272. https://doi.org/10.1002/etc.1810.
DeForest, D. K., Ryan, A. C., Tear, L. M., & Brix, K. V. (2023). Comparison of multiple linear regression and biotic ligand models for predicting acute and chronic zinc toxicity to freshwater organisms. Environmental Toxicology and Chemistry, 42(2), 393-413. https://doi.org/10.1002/etc.5529.
De Schamphelaere, K. A. C., Lofts, S., & Janssen, C. R. (2005). Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environmental Toxicology and Chemistry, 24, 1190-1197.
Environment Canada. (2007). Biological test method: Growth inhibition test using a freshwater alga. Environmental Protection Series. Environmental Science and Technology Centre, Environment and Climate Change Canada, Report EPS 1/RM/25 2nd Ed.
Gadd, J., Albert, A., Mohsin, M., Thompson, K., & Bell, S. (2022). Bioavailability of zinc to an alga and a native daphnid in New Zealand natural waters. NIWA report 2021356AK.
Gadd, J., & Hickey, C. W. (2023). Development of multiple linear regression models for zinc bioavailability and toxicity. Work towards developing Australian and New Zealand guidelines for zinc in freshwater. National Institute for Water and Atmospheric Research Client Report.
Graff, L., Isnard, P., Cellier, P., Bastide, J., Cambon, J. P., Narbonne, J. F., Budzinski, H., & Vasseur, P. (2003). Toxicity of chemicals to microalgae in river and in standard waters. Environmental Toxicology and Chemistry, 22(6), 1368-1379.
Heijerick, D. G., De Schamphelaere, K. A. C., & Janssen, C. R. (2002). Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: Development and validation of a biotic ligand model. Environmental Toxicology and Chemistry, 21, 1309-1315.
Heijerick, D. G., Janssen, C. R., & De Coen, W. M. (2003). The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D. magna: Development of a surface response model. Archives of Environmental Contamination and Toxicology, 44, 210-217.
Holland, A., Stauber, J. L., Wood, C. M., Trenfield, M. A., & Jolley, D. F. (2018). Dissolved organic matter signatures vary between naturally acidic, circumneutral and groundwater-fed freshwaters in Australia. Water Research, 137, 184-192.
Holland, K., Kleinmans, A., & Hussain, E. (2018). State of the environment monitoring: River water quality annual report 2018. Auckland Council Technical Report 2018/003.
Hyne, R. V., Pablo, F., Julli, M., & Markich, S. J. (2005). Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf. dubia. Environmental Toxicology and Chemistry, 24, 1667-1675.
Ivey, C. D., Besser, J. M., Steevens, J. A., Walther, M. J., & Melton, V. D. (2019). Influence of dissolved organic carbon on the acute toxicity of copper and zinc to white sturgeon (Acipenser transmontanus) and a cladoceran (Ceriodaphnia dubia). Environmental Toxicology and Chemistry, 38, 2682-2687.
Lasier, P. J., Winger, P. V., & Hardin, I. R. (2006). Effects of hardness and alkalinity in culture and test waters on reproduction of Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 25, 2781-2786.
Macoustra, G. K., Holland, A., Stauber, J. L., & Jolley, D. F. (2019). Effect of various natural dissolved organic carbon on copper lability and toxicity to the tropical freshwater microalga Chlorella sp. Environmental Science & Technology, 53, 2768-2777.
Macoustra, G. K., Jolley, D. F., Stauber, J. L., Koppel, D. J., & Holland, A. (2020). Amelioration of copper toxicity to a tropical freshwater microalga: Effect of natural DOM source and season. Environmental Pollution, 266, 115141.
Macoustra, G. K., Jolley, D. F., Stauber, J. L., Koppel, D. J., & Holland, A. (2021). Speciation of nickel and its toxicity to Chlorella sp. in the presence of three distinct dissolved organic matter (DOM). Chemosphere, 273, 128454.
Margetts, B., & Marshall, W. (2018). Surface water quality monitoring report for Christchurch City waterways: January-December 2017. Christchurch City Council and Aquatic Ecology Limited.
Mebane, C. A., Ivey, C. D., Wang, N., Steevens, J. A., Cleveland, D., Elias, M. C., Justice, J. R., Gallagher, K., & Brent, R. N. (2021). Direct and delayed mortality of Ceriodaphnia dubia and rainbow trout following time-varying acute exposures to zinc. Environmental Toxicology and Chemistry, 40, 2484-2498.
Moore, T. R., & Clarkson, B. R. (2007). Dissolved organic carbon in New Zealand peatlands. New Zealand Journal of Marine and Freshwater Research, 41, 137-141.
National Institute of Water and Atmospheric Research. (2004). Standard operating procedure 12.1: Daphnia magna 21-day chronic reproduction toxicity test procedure.
Nys, C., Janssen, C. R., & De Schamphelaere, K. A. C. (2017). The effect of pH on chronic zinc toxicity differs between daphnid species: Development of a preliminary chronic zinc Ceriodaphnia dubia bioavailability model. Environmental Toxicology and Chemistry, 36, 2750-2755.
Organisation for Economic Co-operation and Development. (2011). Test no. 201: Freshwater alga and cyanobacteria, growth inhibition test, OECD guidelines for the testing of chemicals, Section 2. https://doi.org/10.1787/9789264069923-en.
Organisation for Economic Co-operation and Development. (2012). Test no. 211: Daphnia magna reproduction test, OECD guidelines for the testing of chemicals, Section 2. https://doi.org/10.1787/9789264185203-en.
Organisation for Economic Co-operation and Development. (2019). Guidance document on aqueous-phase aquatic toxicity testing of difficult test chemicals. OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 23 (2nd ed.).
Perrie, A., Morar, S., Milne, J., & Greenfield, S. (2012). River and stream water quality and ecology in the Wellington region: State and trends. Greater Wellington Regional Council, Publication GW/EMI-T-12/143. GW/EMI-T-12/143.
Peters, A., Merrington, G., Schlekat, C., De Schamphelaere, K., Stauber, J., Batley, G., Harford, A., van Dam, R., Pease, C., Mooney, T., Warne, M., Hickey, C., Glazebrook, P., Chapman, J., Smith, R., & Krassoi, R. (2018). Validation of the nickel biotic ligand model for locally relevant species in Australian freshwaters. Environmental Toxicology and Chemistry, 37, 2566-2574.
Peters, A., Merrington, G., Stauber, J., Golding, L., Batley, G., Gissi, F., Adams, M., Binet, M., McKnight, K., Schlekat, C. E., Garman, E., & Middleton, E. (2021). Empirical bioavailability corrections for nickel in freshwaters for Australia and New Zealand Water Quality Guideline Development. Environmental Toxicology and Chemistry, 40, 113-126.
Price, G. A., Stauber, J. L., Stone, S., Koppel, D. J., Holland, A., & Jolley, D. (2022). Does toxicity test variability support bioavailability model predictions being within a factor of 2? Environmental Chemistry, 19, 177-182.
Price, G. A. V., Stauber, J. L., Jolley, D. F., Koppel, D. J., van Genderen, E. J., Ryan, A. C., & Holland, A. (2023). Development and validation of multiple linear regression models for predicting chronic zinc toxicity to freshwater microalgae. Environmental Toxicology and Chemistry, 42, 1-10.
R Development Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981). Protective effects of certain environmental factors on the toxicity of zinc, mercury, and methylmercury to Chlorella vulgaris. Environmental Research, 25, 250-259.
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PLoS One, 10, 1-13.
Santore, R. C., Mathew, R., Paquin, P. R., & DiToro, D. (2002). Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comparative Biochemistry and Physiology C-Toxicology and Pharmacology, 133, 271-285.
Scott, D. T., Baisden, W. T., Davies-Colley, R., Gomez, B., Hicks, D. M., Page, M. J., Preston, N. J., Trustrum, N. A., Tate, K. R., & Woods, R. A. (2006). Localized erosion affects national carbon budget. Geophysical Research Letters, 33(1), L01402.
Southern California Coastal Water Research Project. (2023). Ceriodaphnia toxicity testing quality assurance. https://www.sccwrp.org/about/research-areas/additional-research-areas/ceriodaphnia-toxicity-testing-quality-assurance/.
Stauber, J., Golding, L., Peters, A., Merrington, G., Adams, M., Binet, M., Batley, G., Gissi, F., McKnight, K., Garman, E., Middleton, E., Gadd, J., & Schlekat, C. (2021). Application of bioavailability models to derive chronic guideline values for nickel in freshwaters of Australia and New Zealand. Environmental Toxicology and Chemistry, 40, 100-112.
Stauber, J., Price, G., Evans, A., Gadd, J., Holland, A., Batley, G., Binet, M., Golding, L., Hickey, C., Harford, A., Jolley, D., Koppel, D., McKnight, K., Morais, L., Ryan, A., Thompson, K., Van Genderen, E., Van Dam, R., & Warne, M. (2022) Towards bioavailability-based guideline values for zinc in Australian and New Zealand freshwaters. CSIRO Report EP2022-0801224+ pp.
Tipping, E., Lofts, S., & Sonke, J. E. (2011). Humic Ion-Binding Model VII: A revised parameterisation of cation-binding by humic substances. Environmental Chemistry, 8, 225-235.
US Environmental Protection Agency. (1987). Ambient aquatic life water quality criteria for zinc. EPA Report 440/5-87-003.
US Environmental Protection Agency. (2002). Method 1002.0: Daphnid, Ceriodaphnia dubia, survival and reproduction test. Excerpt from: Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. (pp. 141-196).
van Dam, R. A., Hogan, A. C., McCullough, C. D., Houston, M. A., Humphrey, C. L., & Harford, A. J. (2010). Aquatic toxicity of magnesium sulfate and the influence of calcium in very low ionic water. Environmental Toxicology and Chemistry, 29, 410-421.
Van Genderen, E., Stauber, J. L., Delos, C., Eignor, D., Gensemer, R. W., McGeer, J., Merrington, G., & Whitehouse, P. (2020). Best practices for derivation and application of thresholds for metals using bioavailability-based approaches. Environmental Toxicology and Chemistry, 39, 118-130.
Van Regenmortel, T., Berteloot, O., Janssen, C. R., & De Schamphelaere, K. A. C. (2017). Analyzing the capacity of the Daphnia magna and Pseudokirchneriella subcapitata bioavailability models to predict chronic zinc toxicity at high pH and low calcium concentrations and formulation of a generalized bioavailability model for D. magna. Environmental Toxicology and Chemistry, 36, 2781-2798.
Warne, M. S., Batley, G. E., van Dam, R. A., Chapman, J. C., Fox, D. R., Hickey, C. W., & Stauber, J. L. (2018). Revised method for deriving Australian and New Zealand water quality guideline values for toxicants-Update of 2015 version. Prepared for the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments.
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://doi.org/10.1007/978-0-387-98141-3.
معلومات مُعتمدة: Australian Government Research Training Program Scholarship; International Zinc Association; DE160100628 Australian Research Council
فهرسة مساهمة: Keywords: Bioavailability model; Metal; Models; Water quality guidelines; Zinc
المشرفين على المادة: 0 (Organic Chemicals)
J41CSQ7QDS (Zinc)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20230721 Date Completed: 20231122 Latest Revision: 20231122
رمز التحديث: 20240628
DOI: 10.1002/etc.5722
PMID: 37477462
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-8618
DOI:10.1002/etc.5722